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ARTICLE DETAILS ABSTRACT

Article History: The issue of ASEAN food security has led to chemical pesticides-driven policy directives as economic

convention for protecting crop yields while concomitantly conferring an implicit ecological and health risk-
based ‘trade-off’ that works to undermine SDG target indicators 2.4, 3.9, and 6.3. In this study the Pesticides
Consumer-Environmental Indexing System (PCE-ISys), a conceptual heuristic ‘systems-based’ framework is
proposed to explore needed policy-informing option(s) beyond the largely cost-externalising rubric of
chemical crop protection management, by indexing (the potential for and magnitude of potential) pesticides
exposure (EIR-IS) using a semi-quantitative tiered percentile-based, continuous-to-discrete variable
transform that captures the stochastic distribution arising from the ‘generalisable’ interconnectivity of
political governance, agricultural economy, and natural environment. 1990-2016 indexing results revealed
‘high’ EIR-IS levels for 52% and 63% of Asia-Pacific and ASEAN nations, respectively, with 28% of Asia-Pacific
countries scoring at ‘highest’ indexing levels demonstrating pervasive and expansive pesticides-use and/or
tonnage contrary to IPM sustainable agricultural practices.
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1. INTRODUCTION

Around the middle-to-late twentieth century rapid population growth, and
increased food demand helped drive the impetus for what would become
the green revolution, a set of broad technological, agricultural, and
economic policy directives aimed at ending food hunger across large
swaths of the developing world such as Southeast Asia (ASEAN).
Producing sufficient crop output to feed millions of people (over a
relatively short-term) necessitated a shift from subsistence farming to
high production volume agricultural methods dependent upon intensive
use of land and natural resources (Hazell 2009; Paddock, 1970; Pingali,
2012). Today, the aim of global food security is set forth in United Nations
(UN) Sustainable Development Goal (SDG) 2 (United Nations Development
Programme, 2021).

1.1 Agroeconomic Systems, Pesticides, and Human Health Risk

Agricultural intensification in line with green revolution policies was (and
still is) characterised by the adoption of pervasive chemical pesticides-use
as economic convention for protecting crop yields (EU Parliament, 2021;
Fernandez-Cornejo et al., 1998; Glass and Thurston, 1978; Pingali, 2001;
Pinstrup-Andersen, 2002; Popp et al, 2013; Popp and Hantos, 2011;
Repetto, 1986; Sharma et al, 2019; Zhang, 2018; Zilberman et al., 1991).
Worldwide, pesticides are largely managed by way of a cost-benefit
derived regulatory approach defined by quantitation of risk that
extrapolates ‘safe’ or ‘acceptable’ exposure levels from toxicity study data,
i.e, MRLs. The outcome has been (and is) a politically tolerated (if not
widely accepted) risk-based ‘trade-off with health and environment
despite the ever-growing repository of information demonstrating the
ecological and public health impacts associated with their use (United

States International Trade Commission, 2020; Zilberman et al., 1991;
Zilberman and Millock, 1997).

This compromise, however, arguably works to fundamentally undermine
the purpose of SDG target indicators such as 2.4, 3.9, and 6.3.  The
convergence of numerous factors including, pesticides physico-chemical
properties, conditions of climate, air, land, and water, as well as collective
political and regulatory decision-making aimed at meeting food
consumption demand and economic growth objectives all potentially
influence population-based risk from high production volume chemical
farming pesticides (Organisation for Economic Co-operation and
Development, 2018) commonly used within (highly complex) social-
environmental systems of food and agriculture (Bonmatin et al., 2015;
Boxall et al.,, 2009; Del Prado-Lu, 2015; Fernandez-Cornejo et al,, 1998;
Gereslassie et al,, 2019; Kennedy et al,, 2019; Obilo et al., 2006; Rice et al.,
2007; Skevas, 2012; United Nations Environment Programme-HELI,
2004). Figure 1 depicts a diagram of a complex ‘generalisable’
agroeconomic environmental system.

Development-focused policy that guide systems of agricultural economy
have resulted in a strong propensity for pesticides exposure at the
population-level (Aktar et al, 2009; Bonmatin et al,, 2015; Economy and
Environment Institute, 2017; EU Parliament, 2021; Gereslassie et al.,
2019; Lam et al., 2017; Pingali, 2001). Conventional agroeconomic policy
regimens rarely (if at all) take into account the health and environmental
impact(s) of likely residual concentration(s) found in food commodities,
as well as almost certain contamination of air, soil, and water; a
shortcoming further reinforced by risk-based regulatory policy (Del
Prado-Lu, 2015; Leach and Mumford, 2008; Pretty and Waibel, 2005;
Aktar et al,, 2009; EU Parliament, 2021; Obilo et al., 2006; Zillberman and
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Millock, 1997). An exploration of decision-support option(s) aimed at
harmonising public health principles and measures with agricultural food
systems policy is logical for evolving beyond a largely ‘cost-externalising’
governance approach.
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Figure 1: Diagram of a ‘generalisable’ agroeconomic environmental
system (g-AEES)

1.2 Indexing as a Policy Decision-Support Tool

Policy decision-support is an essential informational component for
helping guide governance-based decision making such as addressing the
role of agriculture in achieving economic goals tied to food production,
trade, and consumption (Lencucha et al., 2020; Rose et al., 2016; Udias et
al,, 2018). Indexing is a widely accepted, and reasonably transparent
heuristic approach for evaluating relevant data in support of specific or
broad policy goals across a full range of social, economic, and
environmental issues, such as air quality, monetary policy, and pesticides
impact(s) (Corporate Finance Institute, 2021; Gorai and Goyal, 2015;
Kovach et al, 1992; Sherrick, 2017; Surminski and Williamson, 2012;
World Bank, 2021). For pesticides this type of evaluation device is

principally designed to comparatively score or rank chemicals, or
chemical-related outcomes for purposes of risk reduction.

Pesticides scoring frameworks including the environmental impact
quotient (EIQ) used in support of IPM, and the pesticides environmental
risk indicator model (PERI) used in farm-level decision(s) to limit
pesticides groundwater contamination are designed to index based on
physico-chemical, environmental, and/or health related parameters, the
former using a simple (5=high, 3=medium, 1=low) coding system
corresponding to pesticides toxicity and physico-chemical reference
values, and the latter relying on ecotoxicity and Kow values, as well as the
groundwater ubiquity score (GUS) (Benbrook and Davis, 2020; Chou et al.,
2019; Kookana et al,, 2005; Kovach et al,, 1992; Kromann et al.,, 2011;
Muhammetoglu et al,, 2010; Reus etal., 2002; Soudani et al.,, 2020; Van Bol
etal,, 2005; Van Bol et al,, 2003).

Some indexing models are strictly data-driven in methodology such as the
decoupling index used to address the ‘connectivity’ between agricultural
economy and agricultural pollution, while others such as the
environmental performance index (EPI) evaluate multivariable complex
‘systems,’ by statistically modelling data from 32 sustainability indicators
across two broad evaluation categories, ‘ecological vitality, and
‘environmental health,” measured against macroeconomic indicators for
180 countries (Li et al,, 2019; Wendling et al,, 2020). The use of indexing
methods as policy decision-support in navigating, for example, the
inherently complex milieu of pesticides use within agricultural food
systems offer regulators, policy makers, farmers, and civil society a
transparent and pragmatic evaluation approach from which to draw
practical conclusions about risk reduction guidance measures, and
strategies for achieving ecological, and health-protective goals as a part of
the broader social-economic framework (Choi et al, 2019; Gorai and
Goyal, 2015; Kookana et al,, 2005; Kovach et al., 1992; Kromann et al,,
2011; Wendling et al,, 2020).

In this project study a novel conceptual framework is proposed with the
aim of helping inform policy-relevant decision-making and aiding to
further the sustainable agricultural development dialogue relating to
reliance of pesticides within global/regional food systems, and its public
health implications. The Pesticides Consumer-Environmental Indexing
System (PCE-ISys) is developed from a ‘generalisable’ agroeconomic
‘systems-based’ concept (g-AEES), and supported by semi-quantitative
methodology that draws on a ‘three-tiered’ (upper 25t percentile, median,
and lower 25t percentile) data distribution coding designation to
transform continuous data variable(s) to discrete value(s) for a practical
and transparent measure by which to index agricultural pesticides
potential exposure defined as pesticides ‘total exposure potential’ (EIR-
IS). Analysis of the indexing functionality of PCE-ISys is showcased from
the perspective of select Asia-Pacific and ASEAN countries.

2. METHODS

2.1 Rationale Supporting PCE-ISys

1. The potential for population-level pesticides exposure, and the magnitude of potential exposure (exposure potential) to chemical farming
pesticides arise from an agricultural economic system of crop cultivation, food production, trade, and consumption integrated with the
broader natural environment and political domain (g-AEES); and that the potential for exposure, and exposure potential do not occur in
an environmentally or economically ‘isolated,” or ‘compartmentalised’ manner. In other words, the nature, and magnitude of pesticides
total exposure potential is multi-factorial, and an integrated part of the system.

2. There are many social and economic factors that contribute to the potential for human agricultural pesticides exposure, and exposure
potential. Four key variables, however, are essential in order to conceptualise, quantify, and rate the potential for such presumed exposure.
I) Use of chemicals for the express purpose of crop protection, 11) A requisite goal of producing measurable crop outputs for commercial
food markets, and livestock productivity,

111) Quantifiably discernible land-use allocated for agricultural production, and 1V) A quantifiably discernible population cohort
associated with the given system of economic crop cultivation, food production, consumption, trade and natural environment.

3. Economic, agricultural, and land-use policy decisions (characteristic of agroeconomic environmental systems) are governance variables
that affect the potential for population-level pesticides exposure, and exposure potential.

4. Population-based potential for pesticides exposure, and exposure potential occurs from collective (multi-aggregated) pathways, i.e., the
summation of potential exposures from dietary intake of food products, drinking water, occupational, and non-occupational inhalation,
and dermal routes.

5. Physico-chemical properties of pesticides, and environmental variability and uncertainty are inherently associated with the nature and
degree of population-based potential for exposure, and exposure potential.

6. The main source(s) for the potential for population-based pesticides exposure, and exposure potential arise from aggregate agricultural
and economic policy decisions from within a population cohort’s own country where pesticides are used as inputs for agricultural
production.

7. Population-based potential for pesticides exposure, and the magnitude of potential exposure (and risk) are continuously ‘shifted” vis-a-
vis food commodities consumed, and traded at local, regional, national, and international levels. Thus, the ‘distribution’ of exposure and
risk potential across populations are constantly shifted from one geographical space to another, and that the net ‘influx-efflux’ of total
exposure potential is in a state of variable commercial and ecological ‘equilibrium.” This assumption is supported by the measurable
ubiquity of pesticides in food commodities, and the natural environment (on a global scale).

8. The existence or absence of, and/or the degree of robustness in health-based regulatory policy (including, compliance and enforcement)
impact(s) the extent to which the potential for pesticides exposure, and exposure potential can occur.

9. Agricultural pesticides usage, including intensity of use, and tonnage are not the only variables that contribute to population-based
exposure potential, and total exposure potential, but [usage] is the primary agroeconomic systems-based input necessary for human
exposure to occur, and for total exposure potential to be observed and evaluated.

10. The Precautionary Principle — Chemical farming pesticides are inherently hazardous to all biological organisms, albeit to varying degrees.
Thus, the basis for the PCE-I1Sys model output(s), i.e., the potential for exposure, and daily magnitude of potential exposure (per person)
assumes that pesticides lower total exposure potential (by population) is always more favourable compared with higher total exposure
potential. Thus, the concept of ‘total exposure potential’ should be woven into policy strategy for reducing and/or preventing pesticides-
related health and environmental impact(s) in lieu of (or in conjunction with) a risk-based approach.

Figure 2: Working Suppositions that Support the Rationale for the PCE-ISys Construct
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The Pesticides Consumer-Environmental Indexing System (PCE-ISys) is a
policy evaluation framework built on principles, and indicators of
agricultural economy supported by semi-quantitative methods. The
model is purposed to provide a data-driven screening of population-based
pesticides potential exposure associated with (presumed) economic
macro-policy decisions that impact key agricultural systems inputs and
outcomes, i.e., pesticides-use, agricultural land-use, and crop productivity.
The PCE-ISys decision-support model is based on the principal
assumption that the potential for population-level exposure together with
the magnitude of potential exposure, i.e., ‘total exposure potential’ arises
from the summation use of pesticides across the broader system of crop
cultivation, food production, trade, consumption, and environment.

The PCE-ISys concept works by indexing the potential for pesticides
exposure, and quantifying and indexing the magnitude of potential
exposure on a ‘per capita’ basis. The rationale for the indexing scheme is
based on the idea that substantially limiting, or preventing potential
exposure at the macro-level is central to reducing pesticides related
impact(s), which can happen when consideration is given to integrating
measures of public health into policy decision frameworks that promote
agricultural economy in the context of sustainable development. Figure 2
shows that the PCE-ISys concept is developed from, and buttressed by a
series of working suppositions that help form the basis for the index
construct.

The ten working suppositions help illuminate how a ‘generalisable’ system
of agricultural economy manifests the reality of pesticides usage, total
exposure potential, and its likely public health implications.

2.2 Index Scoring Methodology

PCE-ISys is defined by the capacity to index the total exposure potential of
chemical pesticides arising from industrialised systems of agricultural
economy (g-AEES), the key inputs of which include, total estimated land-
use for agricultural production, total estimated output from crop seeding
and cultivation, and average total annual pesticides-use all in relation to
the total population cohort for a given country. This makes PCE-ISys an
evaluation scheme built on ‘macro-level’ agricultural indicators, the
purpose and scope of which serves as a decision-support tool focusing on
total exposure potential in the context of collective governance and farm-
level decisions that may include policy directives such as implementation
of GAP or IPM strategies, targeted crop, or pesticides subsidisation, or
agricultural tax policy that incentivises, or limits specific farming methods
and/or practices.

2.2.1 Methods-Driven Requirements for PCE-ISys Indexing

Indicators that help explain complex systems (such as g-AEES) are
inherently fraught with variability, uncertainty, and randomness arising
from a host of factors ranging from environmental condition(s) to policy
decision-making processes; in turn, leading to challenges in how health
and environmental outcomes stemming from those system(s) may be
interpreted. The PCE-ISys model construct is both data-driven and
stochastic, so interpretative applicability of its indexing results rely on
three key elements,

e First, evaluation dataset(s) of adequate sample size. Cochran’s
Formula for estimating sample size (modified for ‘smaller’
populations) at 95% confidence is used to determine the minimum
required sample size of nations for the project study (Bartlett II, et
al,, 2001; Pourhoseingholi et al., 2013).

no=2pgle? —» n= o
1 -I' (no_ l)/N

with ‘p’ (the proportion of the population with the defining attribute)
characterised by crop production (by country), where p = 0.91892,
Z=196,e=.05andN=224,q=1-p

e Second is data transformation of g-AEES indicator(s) from
continuous to discrete variable for indexing purposes to allow for
direct ‘country-to-country’ observational comparability on a relative
basis.

e Third, a linear correlation assumption to allow for valid statistical
inference in supporting the model indicator variable(s) within the
PCE-ISys design construct, i.e., g-AEES, with the model’s response
output variable, i.e., EIR-IS. Figure 3. shows an (approximately
‘normal-distribution shaped’) histogram of pesticides total exposure
potential scores for all country observations from 1990 - 2016.
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Figure 3: Frequency Distribution of Pesticides Total Exposure Potential
(EIR-IS), by Country Observation for Time Series 1990-2016
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Figure 4: PCE-ISys Three-tiered Percentile-based Coded Point Scheme

PCE-ISys (population-based) pesticides total exposure potential is
expressed as an aggregated relative measure (by country) called the
Exposure Indicator Ratio-weighted Index Score, or ‘EIR-IS’ representing
the potential for exposure, ‘weighted’ by the average daily magnitude of
potential exposure (called ‘exposure potential’) on a per capita basis,

EIR-IS (by country) = PCE-IS (by country) + EIRscore (by country) 8}
EIR-IS is derived from the sum of two relative indexing measures,

e The Pesticides Consumer-Environmental Index Score (PCE-IS), and
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e The Exposure Indicator Ratio Score (EIRscore)

Both metrics are discrete numeric values that correspond to continuous
indicator variables. =~ Where the variable(s) fall within one of three
percentile categories (Upper 25t Middle 50, and Lower 25t%) across the
distribution of continuous variables for a given evaluation dataset
determines the index/indicator score (Han et al., 2012; Toppr, 2020).

e Upper percentile = (3(n+1)/4) t* term
e Median percentile = ((n+1)/2) t term

e Lower percentile = ((n+1)/4) t term

As shown in Figure 4 each percentile category is assigned a designated
value, 1-,3-, or 5. ‘3’ is the value ‘coded’ to continuous indicator variables
that fall within the middle 50t percentile of the distribution range. An
assigned point score of ‘1’ or ‘5’ corresponds to either the upper or lower
25t percentile, depending on how the respective indicator variable is
assumed to behave within g-AEES.

PCE-IS represents the potential for pesticides exposure (by country) for
one calendar year. The index score is expressed as,

PCE-IS = PUR (%ile) + CPIDX (%ile) + AGL (%ile) + AEP (%ile) 2)

and has a score range from 4 to 20 in incremental units of two. The higher
the PCE index score the greater the potential for pesticides exposure.

The ElRscore represents a discrete relative value for pesticides ‘exposure
potential.” The score is a numeric ‘weighting’ factor (when combined) with
PCE-IS produces a total exposure potential score (EIR-IS), with an index
scale of 5 to 25 (by country). Similar to the PCE-IS scoring methodology,
ElIRscore is scored based on where the Pesticides Exposure Indicator Ratio
(PiexpR) variable falls within the data distribution range of all Piex,R values
for the given evaluation dataset (by year), seen in Figure 5.

Percentile EIR
Key Category Coded Comments
Parameters .
(%) Points
PiexpR (by Upper 25th 5
country); a ) EIRscore is the
relative myeasure Middle 50th 3 numeric relative
of daily measure of
pesticides PiexpR that is
exposure Lower 25th 1 used to ‘weight’
potential per PCE-IS
capita

Figure 5: PCE-ISys Percentile-based Coded Point Scheme for PiexpR

The higher the PiexR value across the distribution range, the higher the
(percentile category based) EIRscore. PiexpR is a unitless continuous variable
that represents the relative average measure of daily pesticides exposure
potential that is equal to, exceeds, or is below the Pesticides Reference
Indicator Ratio (PirefR = PirefUC / PirefUC); and is expressed as follows:

PiexpR = PiexpUC / PirerUC 3)

where PiexpUC (the unit-converted Pesticides Exposure Indicator) is a
function of the product of the unit-converted pesticides-to-crop
productivity ratio (PCPr) and farmland area per capita (FLAC)

Piexp = PCPr x FLAC (Kgpesticides person-! year-1)
{

PCPreountry. Ikgpesticidesz ha) x FLACcountry (ha/ person) = Piexp
Annual (1-year) [unit conversion]
{

(kgpesticides /person-year) (1-year/365 days) (1*106 mg /1 Kgpesticides)
l

Pesticides Exposure Indicator (mgpesticides person- day-1) = Piex;UC (4)

where,

Pesticides-to-Crop Farmland Area per capita

Productivity Ratio (PCPr) (FLAC)
l l
Total (Annual) Pesticides Use Total (Annual) Agricultural Land
Rate (kg/ha) Area (ha)

X

Annual Estimated Country
Population (per.)

Annual Crop Production Index

Next, the Pesticides Reference Indicator (Pi.fUC) denotes a benchmark
level representing the 95% upper bound limit of the mean (unit-
converted) Pesticides Exposure Indicator value(s) for all countries (within
a given evaluation dataset) that have annual total average pesticides use
rate(s) less than or equal to 0.5 kg/ha.

PirefUC = 95% UCL of priexpUC (pesticides use rate < 0.5 kg/ha, low’)  (5)

where,

tpiepUC = ) PlexpUC (pesticides use rate < 0.5 kg/ha)
Y countries (pesticides use rate < 0.5 kg/ha)

Pesticides use rate level(s) such as 0.5 kg/ha were adopted as a
modification of the Wachter & Staring guideline protocol for active
ingredient use rate(s) (World Health Organization, 1990), and correspond
to the economic status, and regulatory sophistication of the given country.
Annual use rates of 0.5 kg/ha to 0.1 kg/ha are graded as ‘low’ while <0.1
kg/ha, and = 1 kg/ha annual pesticides active ingredient use rate are
graded as ‘very low,” and ‘high,’ respectively. PirfUC reflects the minimum
threshold of average daily pesticides exposure potential that is rated as a
‘Lower Appreciable’ public health concern.

2.2.2 PCE-ISys Public Health Rating Scheme

The PCE-ISys evaluation model is not a tool designed to reflect
estimation(s) of risk or impact(s) associated with the use of crop
protection chemicals. Instead, [it] is a data-driven construct that produces
a relative measure of pesticides-related potential exposure that
corresponds to a generic qualitative rating (supported by Working
Supposition 10) termed ‘public health concern.” The basis for the indexing
system’s public health-related rating scheme is centred on three basic
precepts,

e That chemical pesticides are engineered to produce target organism
mortality, but also manifest varying degrees of ‘collateral’ toxicity to
other biological species, including humans.

e That pesticides-related health impact(s) and risk are function(s) of
pesticides exposure.

e That pesticides risk reduction through ‘integrated’ policy and
planning measure(s), over the long-term, are best accomplished, and
more cost-effective through prevention efforts than through (largely
cost externalising) ‘command and control’ impact mitigation.

PCE-ISys public health rating categories correspond to pesticides total
exposure potential as a function of EIR-IS or PCE-IS percentile-based
scoring distribution(s). Figure 6. illustrates that the public health
classification measure for the indexing system is a qualitative expression
termed ‘Appreciable’ public health concern.

The scoring classifications across each data distribution range are ordered
according to percentile range: Upper 25%%ile = Highest Appreciable,
Median = Appreciable, and Lower 25%%ile = Lower Appreciable. Based on
the index score distribution(s) for each of the 27 evaluation datasets, the
year-to-year threshold levels for each respective percentile range for this
project study was as follows (index score distributions were tabulated
from data available at www.threepercentearth.org/reports-analysis/),

e EIR-IS = 17 (Upper 25%), EIR-IS = 15 (Middle 50t%), EIR-IS < 13
(Lower 25t)

A

e PCE-IS = 14 (Upper 25%), PCE-IS = 12 (Middle 50%), PCE-IS < 10
(Lower 25t%)
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Rating or Exposure
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Highest Appreciable Public EIR-IS or PCE-IS (by country)
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Upper 25th Highest Health Concern
EIR-IS or PCE-IS Middle 50th Medium to High Appreciable Public Health
(by country) Concern
Lower 25th Lower Lower Appreciable Public

respective evaluation dataset

Health Concern

Figure 6: Public Health Rating Classification Scheme

2.3 Data Methodology

2.3.1 Data Sources

Data that reflect the model input variables for the PCE-ISys model
constructare available as open access from FAO and World Bank websites.
Pesticides use data was accessed from the FAO website,
http://www.fao.org/faostat/en/?#data/RP, and separately downloaded
in bulk as Excel files categorised by world regions Africa, Americas, Asia,
Europe, and Oceania. Data for the rest of the model input variables were
accessed at the following World Bank websites by doing total bulk data
downloads as ‘.csv’ files then saved as Excel “xlIsx’ files, 1) for Crop
Production Index,
https://data.worldbank.org/indicator/AG.PRD.CROP.XD, 2) for annual

total population estimates by country,
https://data.worldbank.org/indicator/SP.POP.TOTL, 3) for annual total
land area by country,
https://data.worldbank.org/indicator/AG.LND.TOTL.K2, and 4) for
annual percent land area for agriculture,

https://data.worldbank.org/indicator/AG.LND.AGRI.ZS. Data from the
World Bank site representing the model input variables were extracted
from the original downloaded spreadsheets and collated into columns in
new worksheets that included data from 268 countries, world regions, and
other world development classification categories.

2.3.2 Organising the Data, and Data Testing the Model

Data collected from World Bank and FAO websites were organised and
managed using Microsoft Office Excel version 16.43 with data analysis
functionality. The PCE-ISys working model was developed using Excel
because of the transparency, and ease of use of the application’s
mathematical functions to generate the indicator, and index outputs by
country, and by year. A ‘source’ dataset worksheet was used to
consolidate, and organise all raw, and processed data for the project. The
basic steps for the worksheet data consolidation and organising process
were as follows, 1) all g-AEES (indicator variable) data were entered into
the source worksheet. This included all 268 countries, world regions, and
other world development classification categories, 2) all categories
(except for individual countries) were culled from the source worksheet;
use of Cochran’s Formula at 95% confidence (section 2.2.1) estimated the
minimum required sample size (n) per evaluation dataset for the project
study to be (at least) 76 countries, 3) the remaining individual countries
were further screened to include only those with average annual

pesticides-use rate data (157 2n = 133).

Consumption rate data (by country) were available from years 1990 -
2016 (the evaluation time-series for the project study). 2016 was the
terminal year of the time series because (at the time of data collection)
there was no crop production index data beyond that time frame. 4) g-
AEES indicator variable, total land area was unit-converted from square
kilometres to hectares in order to comport with the unit expression used
in the PCE-ISys model, then total agricultural land area (by year) was
determined by calculating total land area (by country) as a percent of land
area allocated for agriculture (by country), 5) eight additional columns
were added to the source worksheet dataset.

The four initial data columns included the land area unit conversion, then
calculation of total agricultural land, and PCPr and FLAC output
calculations, respectively. 6) The final four additional columns included
calculation and unit conversion of Piep (kg/person-year) to Piex,UC
(mg/person-day), inclusion of PifUC values, calculation of PiegpR
(PiexpUC/PirefUC), and then scale-adjusted by a factor of 10 (Adjusted-
PiexpR = PiexpUC/PireflUC x 10). Eighteen auxiliary columns were added to
the source worksheet, three columns for each g-AEES indicator variable
and EIRscore percentile range i.e., Excel ‘= percentile’ function for upper 25t
(‘75%’), 50, and lower 25%; and the last three auxiliary columns for index
scoring PCE-IS, totalling EIRscore, and index scoring EIR-IS. All indicator
variable data (by country) for twenty-seven evaluation datasets in the
project study were indexed to generate PCE-IS and EIR-IS for all country
observations for the time series.

2.4 PCE-ISys Model - Correlation and Variance

2.4.1 Multivariate Test for EIR-IS and g-AEES

A regression analysis was conducted to determine the strength of
association between the PCE-ISys weighted index score (output/response
variable), and its respective g-AEES (input) variables. First, test(s) of
collinearity demonstrated no discernible correlation among indicator
(input) variables. Second, it should be noted that neither indexing output
trend nor model predictiveness was the focus of the regression exercise.
In addition, examining the effect(s) of PCE-ISys database outliers among
the 27 non-independent evaluation datasets (and its effect on model
output distribution(s)), or use of nested model(s) were considered, but
decided against for this particular study.
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Figure 7: Average EIR-IS as a Function of g-AEES Linear Correlation and Variance
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Purposed as a ‘screening-level’ information dissemination tool the aim,
instead, was to offer a basic underpinning of whether a linear relationship
exists between pesticides total exposure potential and its model input
variables in the context of g-AEES (not by country), but on a global and
generalisable scale. A standard multivariate analysis was employed using
g-AEES input variable(s), and their respective index output(s), i.e., EIR-IS
averaged for all data points within each annual evaluation dataset of the
time series (by country). Figure 7. shows the EIR-IS linear response
output in relation to the four key indicator variables that define the g-
AEES-based model.

The g-AEES regression model shown in Figure 7 demonstrated a
moderately strong association between average EIR-IS and average
pesticides consumption rate, Crop Production Index, agricultural land

area, and estimated country population, with r=0.657789, and directional
correlation for three of 4 input variables consistent with their assumed
behaviour within g-AEES (‘population’ variable was equivocal).
Multivariate R? indicated that the model explains between 42% to over
43% of the variance in average pesticides total exposure potential (F-Test
Significance = 6.62 x 10-18).

2.4.2 Multivariate Test for EIR-IS and Exposure Potential

A second regression test was conducted to examine the strength of
association between average EIR-IS, and indicator variables used to derive
PiexpUC. There was, again, no demonstrated collinearity. Figure 8. shows
the EIR-IS linear response output in relation to the two indicator variables
used to determine exposure potential, i.e.,, PCPr and FLAC.
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Figure 8: Average EIR-IS as a function of PiexUC Linear Correlation and Variance

The multivariate ‘exposure potential’ (PiexyUC) model also demonstrated a
moderately strong positive directional correlation between average
pesticides total exposure potential and average daily magnitude of
potential exposure (per person) with r=0.699048. Variance in EIR-IS as a
function of ‘exposure potential’ was R2=0.49 (F-Test Significance = 3.72 x
10-23) indicating that nearly half the variation in EIR-IS output(s) are
explained by pesticides use per unit of crop productivity and agricultural
land area per capita (a surrogate indicator of pesticides tonnage). All
indicator variables for both models were statistically significant, except
for ‘Average Estimated (Country) Population,” which was marginally non-
statistically significant (p-value = 0.078810616); though this occurrence
was not altogether unexpected given the likely complexity of human
population dynamics in relation to agricultural food systems.

The fact, however, that FLAC was both strongly statistically significant and
linearly correlated to EIR-IS helps support the argument that country
population (in relationship with agricultural land-use) is indeed a relevant
variable (in the context of pesticides tonnage) for interpreting pesticides
total exposure potential, but poses a challenge in defining its contributing
influence on EIR-IS from the perspective of g-AEES, indicating that a more
in-depth computational modelling exercise is likely necessary to parse out
the effect of ‘population’ within this system.

The machinations of politics, governance, and economic activity that
characterise complex ‘social-environmental’ systems, create inherent
degrees of uncertainty, and variability in models that attempt to interpret
such systems. Thus, Pearson correlation levels tangibly above 0.5 for both
regression tests arguably help inspire a reasonable degree of confidence
for the plausibility of PCE-ISys as a workable policy decision-support
concept (Samuel and Okey, 2015). Similarly, R2 values for both regression
models indicating that the index construct explains over 40% to nearly
50% of any change in the EIR-IS response variable output is an
encouraging prospect for the usefulness of PCE-ISys. Why? 1) The degree
of model variance indicated in both g-AEES and PiexyUC models allude to
PCE-ISys agroeconomic predictor variables as basic factors associated
with the modern agricultural food system, and that 2) by relying on a
highly parsimonious model that precludes other potentially knotty
(social, cultural, political, regulatory, and environmental) variables (that,
although may ‘capture’ the remaining difference in model variance)
minimises the risk of diminishing the transparency, and confounding the
general interpretative capacity of the index output(s) that would arguably

undermine its main functional purpose and advantage as a broad-based
information dissemination tool.

3. RESULTS AND DISCUSSION
3.1 Pesticides Total Exposure Potential
3.1.1 Ranking Profiles

The primary analytical feature of PCE-ISys is the capacity to (semi-
quantitatively) index the potential for exposure to pesticides, ‘weighted’
by the magnitude of potential exposure (per capita). One particular
application derived from this indexing construct is the ability to generate
a multi-output ‘profile’ that includes, EIR-IS, PCE-IS, and PiexR used in
producing a numeric ranking structure for either a single evaluation
dataset or averaged over a given time series. Due to the high number of
total individual indexing outputs and their associated g-AEES parameter
values (~50000), all parameter-specific data and data-driven outputs
(excluding PCPr, FLAC, Piexp and Piex,UC categories) for individual country
observations per evaluation dataset have been made available as open
access at www.threepercentearth.org/reports-analysis/. A time series-
averaged EIR-IS ranking chart for 157 countries displayed in Table 1.
(Next page) produced interesting results in terms of pesticides total
exposure potential (by country) over the 27-year time frame. Each
country in the average ranking chart was colour-coded according to world
region.

WORLD REGIONS
AFRICA
THE AMERICAS
ASIA-PACIFIC
EUROPE
MIDDLE EAST & CENTRAL/WESTERN ASIA

Percentile-based index score threshold levels were as follows:

e Average EIR-IS = highest average total exposure potential (Highest
Appreciable public health concern) =2 17.07407,

e 17.07407 > Average EIR-IS = medium-to-high total exposure
potential (Appreciable public health concern) > 12.85185, and

e Average EIR-IS = Lower average total exposure potential (Lower
Appreciable public health concern) < 12.85185.
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Table 1: Time Series-Averaged Exposure Indicator Ratio-Weighted Index Score and Rank (1990 - 2016)

COUNTRY AVERAGE EIR-S WORLD RANK COUNTRY AVERAGE EIR-IS WORLD RANK COUNTRY AVERAGE EIR-IS WORLD RANK COUNTRY AVERAGE EIR-IS WORLD RANK
Belize 21.37037037 1 Maita 17 2 Gambia, The 1492592593 & Bhutan 1285185185 uz
Malaysia 1220002 2 Nicaragua 17 ) Bulgaria 4ImITIe 2 Timor-leste 12.65185185 117
Slovenia 2084 3 El Salvador 16.92552583 “ Qatar 14777777178 ] Kenya 127777778 119
Guatemala 20.33333333 4 Phil ippings 16.92592593 “ Zimbabwe 1477777778 4 Estonia 1276 120
Cyprus. 20.18518519 B Paraguay 1685185185 46 Peru 14.7037037 85 INDONESIA 127037037 121
Ecuador 19.96296296 6 CANADA 16.77771IT18 4 Venezuela, RE 147037037 85 Ireland 127037037 121
Portigal 1988388889 7 Spain 16777717718 41 Albania 1462962963 & Myanmar 12.55555556 123
West Bank and Gaza 19.7826087 8 North Macedonia 166 L) Algeria 1462962963 & Togo 12.55555556 123
ITALY 1944444444 9 Netherlands 16.55555556 S0 Bahrain 14 62962963 8 Kazakhstan 1252 125
Maldives 19.41666667 10 Sti Lanka 1648148148 51 RUSSIAN FEDERATION 1456 0 Bargladesh 1248148148 126
Greece 1914814815 1 Uruguay 16.40740741 52 Ukraing 16 20 Hong Xong 4R, China 1233333333 27
Isragl 19.14814815 11 Thailand 16.33333333 53 1APAN 14.55555556 2 Pakistan 12.25925926 128
Colombia 19.07407407 13 Tunisia 1633333333 53 St Kitts and Nevis 1455555556 92 12.18518519 129
Costa Rica 15 14 Oman 16.11111111 55 Guinea-Bissau 1448148148 4 Poland 12.18518519 129
Chile 18.85185185 15 Luxembaur] 1594117647 56 Crech Republic 14 47826087 % Uganda 1211111111 131
CHINA 185185185 15 Moroco 1581461481 51 Slovak Republic 14 41666667 % Malawi 1185883689 132
Tukmenistan 1884 17 Suriname 1581481481 51 Egypt, Arab Rep. 1433333333 9 Namibia 1168888889 132
St. Lucia BT 1% Belgium 15.70588235 5 Kuwait 1433333333 9 Ethiopia 1166666667 134
il 18.7037037 19 Hungary 15 66666667 & Amenia 1428 £ Angdla 1151851852 135
Lebanon 18.55555556 20 AUSTRALIA 15.59259259 61 Torga 1425925526 100 Burkina Faso 11.51851852 135
Seychelles 1833333333 2 Guyana 1559259259 61 Antigua and arbuda 1411111111 101 Norway 1151851852 135
Georgia 1828 22 Austria 1551851852 63 Rwanda 13.96206296 102 Tanzania 1151851852 135
Vanuaty 18.18518519 23 Brunei Darussalam 1551851852 63 Papua New Gunea 13 88888889 103 Cabo Verde 1144884 139
ARGENTINA 17.96296296 i) Libya 1551851852 5] Lithuania B8 104 Congo, Rep. 1144448844 139
French Polynesia 17.96296296 24 SOUTH KOREA, REP. 1551851852 8 Cote d'ivoire 13.74074074 105 Denmark 1L u1
Dominican Republic 17.88888889 26 Balarus 1548 67 Guinea 1374074074 105 Mozambique 1122202222 141
Honduras 1788888889 26 Iran, Islamic Rep. 15 44488444 68 Yemen, Rep. 13.74074074 105 Lso POR 1107407407 143
Panama 1748388889 26 Romania 1544844844 68 Burund 1351851852 108 Finland 11 144
Samoa 17.88888889 26 Cameroon 1537037037 0 INDIA 1351851852 108 Senegal 10.92592593 145
BRAZIL 17.74074074 30 Kyrgyz Republic 15.16 n Latvia 1348 110 Central African Republic 10.7037037 146
Montenegro n.nnnis 31 SAUD| ARASIA 15.14814815 n GERMANY 1337037037 111 Lesotho 107037037 146
Syrian Arab Republic 1759259259 32 TURKEY 15.14814815 n UNITED KINGDOM 132962963 112 Botswana 10.6296293 148
Barbados 17.46153846 33 UNITED STATES 15.14814815 n Aserbaijan 13.16 13 Irag 10.629629%3 18
Jordan 17.37037037 34 Croatia 1508 75 Zambia 1314814815 114 Eritrea 10.47368421 150
Vigtram 17.2962963 35 Ghana 1507407407 7% Comores 12.92592593 115 Chad 10.33333333 151
Moldova 17.24 36 New Caledonia 15.07407407 7% SOUTH AFRICA 1292592593 115 Sweden 10.33333333 151
New Zealand 172220232 a7 Bolivia 15 v Haiti 1025925926 153
Trinidad and Tobago 17.16 38 MEXCO 15 7 Niger 10.18518519 154
Mauritius 17.14814815 39 Switzerland 15 7 Nepal 9.962962%3 155
FRANCE 17.07407407 40 Mongolia 9.074074074 156
Jamaica 1707407407 40 Mawritania 9 157

Also, for the project study in this instance, the ‘medium-to-high’ index
distribution range was further subdivided:

e ‘high’ (17.07407 > Average EIR-IS (Higher Appreciable public health
concern) = 15), and

e ‘medium-to-lower medium’ (15 > Average EIR-IS (Medium
Appreciable public health concern > 12.85185).

One noticeable observation gleaned from the time-averaged evaluation
appears to reveal a broad, underlying consistency between average
annualised pesticides-use per area of cropland, and pesticides total
exposure potential, i.e,, regions of the world where use rates are deemed
consistently high, or low such as in the Americas and Africa (FAOSTAT,
2021), respectively saw overall correspondingly ‘highest,” and ‘lower’ EIR-
IS outputs for these same areas. This analysis outcome also draws support
from the g-AEES linear correlation and variance results.

Of nations with the highest average pesticides total exposure potential for
the time series 38%, and 23% were from the Americas, and Asia-Pacific
region, respectively, while 63% of nineteen G7/G20 nations evaluated in
the project study demonstrated either ‘high’ or highest total exposure
potential. On first pass, a country-by-country global perspective appears
to suggest that the size of a country’s economy may be a feasibly reliable

indicator for pesticides total exposure potential. However, a closer look at
the time series-averaged EIR-IS appears to indicate that developing
nations with known ‘transitioning’ economies may be consistently more
vulnerable to higher pesticides total exposure potential. Examples of such
places include, Belize, Malaysia, Ecuador, Colombia, Costa Rica, and Fiji,
countries that (generally speaking) place a relatively high premium on
economic growth and development, while in some cases discounting
principles and applications of sustainability (Wendling et al.,, 2020).

A wide-ranging, prospective policy analysis of the potential factors that
may affect EIR-IS, such as human development status, agricultural GDP,
degree of regulatory sophistication, or measures of socio-cultural
attitudes toward pesticides may be useful in providing greater insight into
possible solution(s) for reducing and/or preventing pesticides-related
impact(s) arising from politically driven, agroeconomic systems.

3.1.2 Asia-Pacific Region and ASEAN

The PCE-ISys evaluation study included twenty-nine countries located
throughout East Asia, South Asia, ASEAN, and Oceania, under the broad
heading of ‘Asia-Pacific.’” Figure 9. illustrates a vertical EIR-IS index chart
showing pesticides total exposure potential across the Asia-Pacific region
from 1990 - 2016 (by country, region, and worldwide).
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Figure 9: Time Series-Averaged EIR-IS for the Asia-Pacific Region (by country)
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Asia-Pacific as a regional designation produced an average EIR-IS of 14.94
(versus 15.02 globally) for the 27-year time series, indicating that
agricultural food systems across this region are (on average)
characterised by pesticides-related ‘Appreciable’ public health concern
qualified with a sub-group rating of ‘medium’ total exposure potential. A
more detailed look at the Asia-Pacific indexing results reveal that ten of 29
nations (34.5%) across this region produced average EIR-IS ratings at, or
below the 12.85 (lower total exposure potential) benchmark, of which
Hong Kong (EPI=N/A) is HDI-rated as ‘very high’ (0.949), and Indonesia
EPI=37.8, HDI=0.718 is G20 designated. Over half of the remaining
developing nations in this sub-group (excluding Mongolia EPI=32.2,
HDI=0.737, Bhutan EP1=39.3, HDI = 0.654, and Bangladesh EPI=29, HDI =
0.632) are largely rated as having medium HDI (on the lower range), and
below average environmental performance index score(s) (EPI < 46.44),
they include, Lao PDR, Myanmar, Nepal, Pakistan, and Timor-Leste (UNDP
Human Development Index, 2021; Wendling et al., 2020).

This indexing output ‘dynamic’ appears consistent with evidence that
generally lesser developed countries that tend to maintain a relatively
more subsistence, or local market index of agriculture may be (on average)
less apt to rely on pervasive pesticides-use (which, in some cases, limits
pesticides tonnage) compared with their more developed counterparts
(World Health Organization, 1990). Of the ‘highest total exposure
potential’ sub-group of Asia-Pacific nations, the majority are recognised as
‘developing’ (New Zealand EPI=71.3, HDI=0.931 being the exception), and
having ‘transitioning’ economies (with China being a G20). They include,
for example, China, Fiji, Malaysia, Samoa, and Vietnam (UNDP Human
Development Index, 2021; Wendling et al., 2020).

Asian-Pacific countries undergoing rapid economic development are
largely faced with concomitant health and environmental impacts,
especially evident in China, and across most of ASEAN. Thus, it is not
surprising that governance and policy measures that direct agricultural
food systems within these same jurisdictions would also experience (on
average) consistently higher systemic pesticides-use rates. Table 2.
displays environmental performance index scores, UN human
development indexes, the time series-averaged pesticides-use rates, and
their associated EIR-IS for the ‘highest’ and ‘lower’ total exposure potential
Asia-Pacific sub-groups (Wendling et al., 2020).

Table 2: Comparison of Asia-Pacific ‘Highest’ and ‘Lower’ Total
Exposure Potential Sub-Groups
Countries with Average A
- verage
('highest total exposure EPI HDI Pesticides-Use EIR-I%
potential’) Rate (kg/ha)
. 37.3 | 0.761 18.85
China 10.36
Fiji 34.3 | 0.743 1.86 18.70
Malaysia 479 | 0.810 6.43 21.22
Samoa 373 | 0715 0.99 17.89
Vietnam 2.49
33.4 | 0.704 17.30
Countries with Average A
('lower total exposure EPI HDI Pesticides-Use verage
: EIR-IS
potential’) Rate (kg/ha)
34.8 | 0.613 11.07
Lao PDR 0.013
Myanmar 25.1 | 0.583 0.176 12.56
Nepal 32.7 | 0.602 0.092 9.96
Pakistan 33.1 | 0557 0.246 12.26
Timor-Leste 0.004
35.3 | 0.606 12.85

PCE-ISys indexing outputs broadly demonstrate that by-and-large, and
irrespective of their EPI ‘sustainability’ rating higher HDI-rated
developing countries within the Asia-Pacific regional designation
(generally associated with rapid economic expansion efforts), possess
agricultural food systems that appear more reliant on pervasive chemical
pesticides use compared to less developed nations within the region. Also,
it can be reasonably surmised that the time series-averaged EIR-IS
outcomes for each of the countries within their respective sub-groups are
evidenced by rates of crop protection chemical use thatare consistent with
the Wachter & Staring use-guideline criteria template that associate
higher or lower active ingredient use-rates with corresponding levels of
country economic development, and regulatory capacity (World Health
Organization, 1990). Evidence-based information derived from PCE-ISys

outputs used in conjunction with other broad-based, empirically derived
metrics, such as HDI, GDP, or GNI, for example, may offer policymakers
and/or regulatory analysts with a viable (policy analysis) alternative to
the dominant risk-benefit based approach to agroeconomic governance.

3.1.3 ASEAN Test Case - Malaysia

Agriculture is an economic mainstay of ASEAN, with farming and fishing
industries in 2018 generating 10.6% of total GDP across the region, as well
as contributing up to 72% of employment (by country) (Food and
Agriculture Organization, 2020). At the same time, across large swaths of
the region use of chemical pesticides, perceived as the policy solution of
highest convenience for ‘ensuring’ optimally higher crop yields in line with
agricultural intensification goals is marked by surplus evidence of
deleterious health and environmental outcomes (Economy and
Environment Institute, 2017; EU Parliament, 2021; Lam et al.,, 2017; Gupta,
2012; FAO-Situation Analysis Report, 2021).

One particularly glaring observation from the year-to-year, and time
series-averaged components of the project study was the exceedingly high
EIR-IS value(s) for Malaysia. In fact, worldwide, over the 26-year span,
only the nation of Belize produced a higher average EIR-IS (see Figure 9),
with their being only a 0.7% difference in average index between the two
countries. Thus, Malaysia offers a comparative ‘point-of-reference’ test
case for ASEAN, and Asia-Pacific nations (if not, worldwide) in how EIR-IS
can be used to screen for the potential public health implications
associated with pesticides input(s) within agricultural food systems.

Vietnam was selected for comparative analysis with Malaysia because of
the former’s similar time series-averaged EIR-IS threshold level and
‘Highest Appreciable’ public health concern rating. A comparison with
lower total exposure potential nations was also deemed necessary. Lao
PDR was chosen because of its below benchmark 11.07 time series-
averaged EIR-IS (lowest among ASEAN nations), and its measurably lower
HDI rating of 0.613; and Indonesia was selected for comparison, also due
to its below benchmark rating of 12.70, and its G20 designation. The
difference in HDI between the two nations, and Indonesia’s comparatively
larger economy provide a more enhanced contrast when comparing
pesticides total exposure potential with Malaysia. Figure 10. shows the
year-to-year trend in annual pesticides use rates for Malaysia, Vietnam,
Indonesia, and Lao PDR. Data available at
www.threepercentearth.org/reports-analysis/.

ANNUAL PESTICIDES USE RATES FOR 4 ASEAN NATIONS
(1990- 2016)
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Figure 10: Annual Pesticides Use Rate Trends for Four ASEAN Nations

The average pesticides use rate for Malaysia from 1990-2016 was 6.43
kg/ha compared to Vietnam (2.49 kg/ha), Indonesia (0.045 kg/ha), and
Lao PDR (0.01333 kg/ha), exceeding Vietnam’s average use rate by 61%,
while surpassing Indonesia and Lao PDR use rate trends by an astounding
14.34 and 48.2 orders of magnitude, respectively. According to the
Wachter & Staring pesticides use-rating guideline, annual use rates of
pesticides active ingredient of, or exceeding 5 kg/ha is deemed ‘very high’
(World Health Organization, 1990). Also, worth noting is that pesticides
use has historically been limited within Lao PDR’s agricultural food system
(including average use rates approaching zero from 1997-2008, 2010,
2014-2016) possibly reflecting a lesser degree of industrialised farming
compared with neighbouring countries such as Indonesia, Malaysia,
Thailand, and Vietnam. Next, Figure 11. illustrates the year-to-year
relationship(s) reflecting EIR-IS as a function of PCPr for all four countries.
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Figure 11: Pesticides Total Exposure Potential as a Function of the
Pesticides-to-Crop Productivity Ratio

PCE-ISys ‘average’ correlation and variance tests point to annual
pesticides use rate and Crop Production Index as the strongest indicator
variables within the model, with Pesticides-to-Crop Productivity Ratio
(PCPr) being the strongest contributing indicator of EIR-IS (regression

coefficient = 43.18, p-value = 1.70 x 10-20) (see Figure 7 and 8). Analysis of
the scatter plot results show:

1) (positive) moderately linear cluster(s) for all four nations, but with
Lao PDR, and Vietnam'’s respective profiles exhibiting visibly more
data dispersion, the latter of which could be interpreted as a function
of the abrupt, then incremental decline in average annual pesticides
usage observed after 1997 (see Figure 10).

2) a concentrated cluster pattern of higher EIR-IS levels for Malaysia
congruent with persistently concentrated levels of ‘high-to-very
high’ pesticides use per unit of crop productivity (per hectare) over
the time series, with observed levels of pesticides use to crop
productivity for Indonesia’s and Lao PDR’s g-AEES consistently 1-2
orders of magnitude below Malaysia’s agroeconomic system (data
available at www.threepercentearth.org/reports-analysis/).

3) that for Vietnam, pesticides use levels relative to its crop production
indices appeared more variable, but consistent with its decreased
usage rates and increased productivity trends over the 26-year span
(data available at www.threepercentearth.org/reports-analysis/).

Next, a comparison of highest and lowest EIR-IS to PCPr ‘pair-function’
offer additional perspective on interpreting the EIR-IS-PCPr scatter plots.
Table 3. shows the change in the difference in magnitude between highest
and lowest PCPr for Vietnam, Indonesia, and Lao PDR compared to
Malaysia for the time series.

Table 3: Highest and Lowest Scatter Plot EIR-IS to PCPr ‘Pair-Function’ PCPr Ratio Difference
HIGHEST LOWEST HIGHEST to LOWEST
HIGHEST SCATTER PLOT | [, OWEST SCATTER PLOT | ‘PAIR-FUNCTION’ ‘PAIR-FUNCTION’ 'PAliléi)FrUR‘\LCTTIE)ON'
COUNTRY ‘PAIR-FUNCTION’ ‘PAIR-FUNCTION' (blue PCPr RATIO PCPr RATIO DIFFERENCE
(red dots in Figure 11) dots in Figure 11) (Malaysia relative to (Malaysi.a relati\{e to (Malaysia relative to
comparison nation) comparison nation) comparison nation)
MALAYSIA EIR-IS=23, PCPr=0.101920 | EIR-IS=17, PCPr=0.07146
VIETNAM EIR-IS=23, PCPr=0.05713 EIR-IS=15, PCPr=0.01202 1.78x 5.95x (4.17x)
INDONESIA EIR-IS=13, PCPr=0.00069 EIR-IS=9, PCPr=0.00022 147.71x 324.81x (177.1x)
LAO PDR EIR-IS=13, PCPr=0.00105 EIR-IS=9, PCPr=0.00015 97.07x 476.4x (379.3x%)

The magnitude of difference in highest and lowest EIR-IS to PCPr ‘pair-
function’ PCPr ratio for Malaysia relative to Vietnam (4.17x), Indonesia
(177.1x), and Lao PDR (379.3x), respectively, is consistent with the latter
three nations (especially Vietnam) either reducing, or maintaining
considerably lower pesticides consumption per unit of crop productivity
in contrast to Malaysia (data available at
www.threepercentearth.org/reports-analysis/), whose collective
agricultural policy goals likely stayed the economic course over the 27-
year time series. ‘Brackets in bold’ indicate that the magnitude of
difference was driven by the lowest ‘pair-function’ ratio. Table 3. results
interpretation draws support from results displayed in Table 4. showing
the highest and lowest EIR-IS to PCPr scatter plot ‘pair-function’ range
profiles for Malaysia, Vietnam, Indonesia, and Lao PDR.

Table 4: Comparison of the Range of Difference in Highest and
Lowest PCPr (by country)
sty | AT
COUNTRY LOWEST PCPr RELATIVE to HIGHEST A EIR-IS
(by country) PCPr (by country)

MALAYSIA 0.03046 29.89% -6
VIETNAM 0.04511 78.95% -8
INDONESIA 0.00047 68.59% -4
LAO PDR 0.00089 85.34% -4

Higher percentage change(s) between the difference in highest and lowest
PCPr (by country) relative to highest PCPr (by country) denotes either a
greater range of reduction in pesticides use per unit of crop productivity
for each hectare of farmed land (per annum), or static use-rates relative to
crop output coupled with measurable crop productivity increases. Table
4 results show a comparatively sizable difference in the range of reduction
in (or consistently lower) use of pesticides for Vietnam (+49%), Indonesia
(+39%), and Lao PDR (+56%) compared to Malaysia. Malaysia’s six-point
EIR-IS decrease at its minimum range turned out to be a statistical outlier
reflecting a largely ‘non-diminished’ relative effect, i.e., pesticides use-
rates data for the country (over the time series) remained consistently
‘very high,” as did its overall index pattern with no change in its public

health rating category, despite considerable increases in crop productivity
(data available at www.threepercentearth.org/reports-analysis/).

Findings from the scatter plot analysis point to pesticides consumption
relative to crop productivity as a reasonable indicator corollary to total
exposure potential. The broad conclusion drawn from interpretation of
the EIR-IS to PCPr scatter plot results (corroborated by FAO and World
Bank-sourced data, www.threepercentearth.org/reports-analysis/) is
that the ratio of pesticides use to agroeconomic productivity for Malaysia,
skewed by ‘very high’ average pesticides use rates, likely contribute to the
country’s persistently elevated pesticides total exposure potential.
Ministry coordinated policy analysis efforts targeting issue(s) of ‘high
proportional use-to-productivity’ within Malaysia’s agricultural food
system may serve to reduce future (per capita) health and environmental
impact(s) from agricultural pesticides use.

Future research and policy analysis aimed at validating the decision-
support functionality of PCE-ISys may include, charting usage trends in
conjunction with agricultural land-use changes, and/or evaluating similar
scatter plot profiles for other Asia-Pacific nation sub-groups as a way of
ascertaining a more comprehensive picture of potential pesticides
impact(s) arising from regional food systems, and to what extent those
potential impact(s) are shaped by conventional versus sustainable
agricultural practices. Other research related consideration(s) for PCE-
ISys may involve examining annual PiexpUC trends relative to registered
crop protection chemicals (by country) as a way of extrapolating
proportional risk from those select pesticides groupings.

Most indexing systems with policy and/or business application(s) are
designed to disseminate ‘units’ of information on a broadly ‘generalisable’
scale, captured within a defined scope of time and space context in
addressing a given social, economic, or environmental issue (Consumer
Finance Institute, 2021; Gorai, AK. and Goyal, P, 2015; Kookana, RS,, et al,,
2005; Kovach, J., et al,, 1992). In this respect, PCE-ISys is no different from
other indexing models in that its algorithm processes data drawn from a
limited set of parameters, i.e., pesticides use, crop productivity,
agricultural land, and population.

One obvious limitation of this type of heuristic evaluation regimen is that
the indexing outputs do not necessarily allow for inferential interpretation
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beyond the scope of its defined parameters. For PCE-ISys that would be g-
AEES. Concomitantly, however, what the PCE-ISys model lacks in
capability to, for example quantify pesticides impact is replaced by the
power of its indexing output(s) to prospectively reframe the debate about
the types of measurement outcomes (qualitative vs. quantitative, or
precautionary vs. risk-based) that should be prioritised in helping guide
agricultural policy-based decision making, especially given that the
economic and environmental reality of the world is not
‘compartmentalised,” but is in fact based on the interconnectivity [of, and
within] social and ecological systems.

4. CONCLUSION

As the Asia-Pacific region, and more specifically ASEAN, begin remission
from the COVID-19 pandemic, the resiliency of Southeast Asia’s
agricultural economy will be showcased. A prime opportunity exists for
governments, economic participants of food producing systems, and civil
society to begin deliberating in earnest the existing limitations of current
risk-based pesticides management for the region. Population across the
ASEAN region is projected to exceed 740 million people by 2035, of which
a monumental task lies ahead to forge sustainable agricultural food
systems that comport with UN SDG target indicators such as 2.4, 3.9 and
6.3. The Pesticides Consumer-Environmental Indexing System (PCE-ISys)
is a novel, semi-quantitative framework designed to be a broad-based,
decision-support screening tool that works by integrating salient
evidence-based information into agroeconomic and environmental policy
analysis.

This project study demonstrates the policy-relevant indexing
application(s) of PCE-ISys, painting a somewhat nuanced, yet concerning
picture of pesticides use throughout ASEAN, and the Asia-Pacific region.
By-and-large, agricultural pesticides use remains systemic and expansive,
likely posing continued health and environmental risk(s) for this area of
the world. Alternatives to largely risk assessment-derived health-based
regulatory policy are needed. ‘Systems-based’ indexing models such as
PCE-ISys can be employed to 1.) encourage governing bodies to transition
towards harmonised policy concepts that more readily foster sustainable
agricultural food systems, and 2.) promote research to further the
discourse in sustainable development policy, specifically in order to
meaningfully address the inefficient, yet enduring ‘policy-
compartmentalising’ of crop protection chemicals use in food systems, and
its associated long-standing resultant impacts to ecological and human
health.
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