

Malaysian Journal of Sustainable Agriculture (MJSA)

DOI: http://doi.org/10.26480/mjsa.02.2022.131.141

ISSN: 2521-2931 (Print) ISSN: 2521-293X (Online) CODEN: MJSAEJ

RESEARCH ARTICLE

AN AGRICULTURAL 'SYSTEMS-BASED' FRAMEWORK FOR INDEXING POTENTIAL EXPOSURE TO FARMING PESTICIDES: TEST FINDINGS FROM ASIA-PACIFIC, AND ASEAN

Ellis Wongsearaya

Three Percent Earth Foundation, 101 Moo 6, Liap Klong Prapa Road, Ban Mai, Pakkret, Nonthaburi, Thailand, 11120. *Corresponding Author Email: info@threepercentearth.org

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 18 May 2022 Revised 13 July 2022 Accepted 11 October 2022 Available online 31 October 2022

ABSTRACT

The issue of ASEAN food security has led to chemical pesticides-driven policy directives as economic convention for protecting crop yields while concomitantly conferring an implicit ecological and health risk-based 'trade-off' that works to undermine SDG target indicators 2.4, 3.9, and 6.3. In this study the Pesticides Consumer-Environmental Indexing System (PCE-ISys), a conceptual heuristic 'systems-based' framework is proposed to explore needed policy-informing option(s) beyond the largely cost-externalising rubric of chemical crop protection management, by indexing (the potential for and magnitude of potential) pesticides exposure (EIR-IS) using a semi-quantitative tiered percentile-based, continuous-to-discrete variable transform that captures the stochastic distribution arising from the 'generalisable' interconnectivity of political governance, agricultural economy, and natural environment. 1990-2016 indexing results revealed 'high' EIR-IS levels for 52% and 63% of Asia-Pacific and ASEAN nations, respectively, with 28% of Asia-Pacific countries scoring at 'highest' indexing levels demonstrating pervasive and expansive pesticides-use and/or tonnage contrary to IPM sustainable agricultural practices.

KEYWORDS

Agricultural Economy; Food Systems; Pesticides Exposure; Public Health; Southeast Asia

1. Introduction

Around the middle-to-late twentieth century rapid population growth, and increased food demand helped drive the impetus for what would become the green revolution, a set of broad technological, agricultural, and economic policy directives aimed at ending food hunger across large swaths of the developing world such as Southeast Asia (ASEAN). Producing sufficient crop output to feed millions of people (over a relatively short-term) necessitated a shift from subsistence farming to high production volume agricultural methods dependent upon intensive use of land and natural resources (Hazell 2009; Paddock, 1970; Pingali, 2012). Today, the aim of global food security is set forth in United Nations (UN) Sustainable Development Goal (SDG) 2 (United Nations Development Programme, 2021).

1.1 Agroeconomic Systems, Pesticides, and Human Health Risk

Agricultural intensification in line with green revolution policies was (and still is) characterised by the adoption of pervasive chemical pesticides-use as economic convention for protecting crop yields (EU Parliament, 2021; Fernandez-Cornejo et al., 1998; Glass and Thurston, 1978; Pingali, 2001; Pinstrup-Andersen, 2002; Popp et al., 2013; Popp and Hantos, 2011; Repetto, 1986; Sharma et al, 2019; Zhang, 2018; Zilberman et al., 1991). Worldwide, pesticides are largely managed by way of a cost-benefit derived regulatory approach defined by quantitation of risk that extrapolates 'safe' or 'acceptable' exposure levels from toxicity study data, i.e., MRLs. The outcome has been (and is) a politically tolerated (if not widely accepted) risk-based 'trade-off' with health and environment despite the ever-growing repository of information demonstrating the ecological and public health impacts associated with their use (United

States International Trade Commission, 2020; Zilberman et al., 1991; Zilberman and Millock, 1997).

This compromise, however, arguably works to fundamentally undermine the purpose of SDG target indicators such as 2.4, 3.9, and 6.3. The convergence of numerous factors including, pesticides physico-chemical properties, conditions of climate, air, land, and water, as well as collective political and regulatory decision-making aimed at meeting food consumption demand and economic growth objectives all potentially influence population-based risk from high production volume chemical farming pesticides (Organisation for Economic Co-operation and Development, 2018) commonly used within (highly complex) social-environmental systems of food and agriculture (Bonmatin et al., 2015; Boxall et al., 2009; Del Prado-Lu, 2015; Fernandez-Cornejo et al., 1998; Gereslassie et al., 2019; Kennedy et al., 2019; Obilo et al., 2006; Rice et al., 2007; Skevas, 2012; United Nations Environment Programme-HELI, 2004). Figure 1 depicts a diagram of a complex 'generalisable' agroeconomic environmental system.

Development-focused policy that guide systems of agricultural economy have resulted in a strong propensity for pesticides exposure at the population-level (Aktar et al., 2009; Bonmatin et al., 2015; Economy and Environment Institute, 2017; EU Parliament, 2021; Gereslassie et al., 2019; Lam et al., 2017; Pingali, 2001). Conventional agroeconomic policy regimens rarely (if at all) take into account the health and environmental impact(s) of likely residual concentration(s) found in food commodities, as well as almost certain contamination of air, soil, and water; a shortcoming further reinforced by risk-based regulatory policy (Del Prado-Lu, 2015; Leach and Mumford, 2008; Pretty and Waibel, 2005; Aktar et al., 2009; EU Parliament, 2021; Obilo et al., 2006; Zillberman and

Quick Response Code Access this article online

Website: www.myjsustainagri.com

DOI:

10.26480/mysj.02.2022.131.141

Millock, 1997). An exploration of decision-support option(s) aimed at harmonising public health principles and measures with agricultural food systems policy is logical for evolving beyond a largely 'cost-externalising' governance approach.

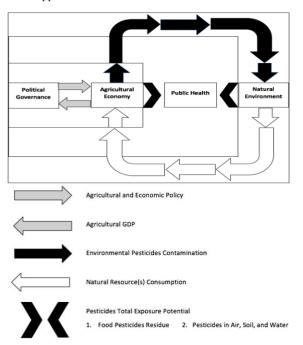


Figure 1: Diagram of a 'generalisable' agroeconomic environmental system (g-AEES)

1.2 Indexing as a Policy Decision-Support Tool

Policy decision-support is an essential informational component for helping guide governance-based decision making such as addressing the role of agriculture in achieving economic goals tied to food production, trade, and consumption (Lencucha et al., 2020; Rose et al., 2016; Udias et al., 2018). Indexing is a widely accepted, and reasonably transparent heuristic approach for evaluating relevant data in support of specific or broad policy goals across a full range of social, economic, and environmental issues, such as air quality, monetary policy, and pesticides impact(s) (Corporate Finance Institute, 2021; Gorai and Goyal, 2015; Kovach et al, 1992; Sherrick, 2017; Surminski and Williamson, 2012; World Bank, 2021). For pesticides this type of evaluation device is

principally designed to comparatively score or rank chemicals, or chemical-related outcomes for purposes of risk reduction.

Pesticides scoring frameworks including the environmental impact quotient (EIQ) used in support of IPM, and the pesticides environmental risk indicator model (PERI) used in farm-level decision(s) to limit pesticides groundwater contamination are designed to index based on physico-chemical, environmental, and/or health related parameters, the former using a simple (5=high, 3=medium, 1=low) coding system corresponding to pesticides toxicity and physico-chemical reference values, and the latter relying on ecotoxicity and Kow values, as well as the groundwater ubiquity score (GUS) (Benbrook and Davis, 2020; Chou et al., 2019; Kookana et al., 2005; Kovach et al., 1992; Kromann et al., 2011; Muhammetoglu et al., 2010; Reus et al., 2002; Soudani et al., 2020; Van Bol et al., 2003).

Some indexing models are strictly data-driven in methodology such as the decoupling index used to address the 'connectivity' between agricultural economy and agricultural pollution, while others such as the environmental performance index (EPI) evaluate multivariable complex 'systems,' by statistically modelling data from 32 sustainability indicators across two broad evaluation categories, 'ecological vitality,' and 'environmental health,' measured against macroeconomic indicators for 180 countries (Li et al., 2019; Wendling et al., 2020). The use of indexing methods as policy decision-support in navigating, for example, the inherently complex milieu of pesticides use within agricultural food systems offer regulators, policy makers, farmers, and civil society a transparent and pragmatic evaluation approach from which to draw practical conclusions about risk reduction guidance measures, and strategies for achieving ecological, and health-protective goals as a part of the broader social-economic framework (Choi et al., 2019; Gorai and Goyal, 2015; Kookana et al., 2005; Kovach et al., 1992; Kromann et al., 2011; Wendling et al., 2020).

In this project study a novel conceptual framework is proposed with the aim of helping inform policy-relevant decision-making and aiding to further the sustainable agricultural development dialogue relating to reliance of pesticides within global/regional food systems, and its public health implications. The Pesticides Consumer-Environmental Indexing System (PCE-ISys) is developed from a 'generalisable' agroeconomic 'systems-based' concept (g-AEES), and supported by semi-quantitative methodology that draws on a 'three-tiered' (upper 25th percentile, median, and lower 25th percentile) data distribution coding designation to transform continuous data variable(s) to discrete value(s) for a practical and transparent measure by which to index agricultural pesticides potential exposure defined as pesticides 'total exposure potential' (EIR-IS). Analysis of the indexing functionality of PCE-ISys is showcased from the perspective of select Asia-Pacific and ASEAN countries.

2. METHODS

2.1 Rationale Supporting PCE-ISys

The potential for population-level pesticides exposure, and the magnitude of potential exposure (exposure potential) to chemical farming pesticides arise from an agricultural economic system of crop cultivation, food production, trade, and consumption integrated with the broader natural environment and political domain (g-AEES); and that the potential for exposure, and exposure potential do not occur in an environmentally or economically 'isolated,' or 'compartmentalised' manner. In other words, the nature, and magnitude of pesticides total exposure potential is multi-factorial, and an integrated part of the system.

There are many social and economic factors that contribute to the potential for human agricultural pesticides exposure, and exposure potential. Four key variables, however, are essential in order to conceptualise, quantify, and rate the potential for such presumed exposure. I) Use of chemicals for the express purpose of crop protection, II) A requisite goal of producing measurable crop outputs for commercial food markets, and livestock productivity, III) Quantifiably discernible land-use allocated for agricultural production, and IV) A quantifiably discernible population cohort associated with the given system of economic crop cultivation, food production, consumption, trade and natural environment.

Economic, agricultural, and land-use policy decisions (characteristic of agroeconomic environmental systems) are governance variables that affect the potential for population-level pesticides exposure, and exposure potential. Population-based potential for pesticides exposure, and exposure potential occurs from collective (multi-aggregated) pathways, i.e., the summation of potential exposures from dietary intake of food products, drinking water, occupational, and non-occupational inhalation, Physico-chemical properties of pesticides, and environmental variability and uncertainty are inherently associated with the nature and degree of population-based potential for exposure, and exposure potential. The main source(s) for the potential for population-based pesticides exposure, and exposure potential arise from aggregate agricultural and economic policy decisions from within a population cohort's own country where pesticides are used as inputs for agricultural Population-based potential for pesticides exposure, and the magnitude of potential exposure (and risk) are continuously 'shifted' vis-à-vis food commodities consumed, and traded at local, regional, national, and international levels. Thus, the 'distribution' of exposure and risk potential across populations are constantly shifted from one geographical space to another, and that the net 'influx-efflux' of total exposure potential is in a state of variable commercial and ecological 'equilibrium.' This assumption is supported by the measurable ubiquity of pesticides in food commodities, and the natural environment (on a global scale). The existence or absence of, and/or the degree of robustness in health-based regulatory policy (including, compliance and enforcement) impact(s) the extent to which the potential for pesticides exposure, and exposure potential can occur. Agricultural pesticides usage, including intensity of use, and tonnage are not the only variables that contribute to population-based exposure potential, and total exposure potential, but [usage] is the primary agroeconomic systems-based input necessary for human exposure to occur, and for total exposure potential to be observed and evaluated. The Precautionary Principle – Chemical farming pesticides are inherently hazardous to all biological organisms, albeit to varying degrees. Thus, the basis for the PCE-ISys model output(s), i.e., the potential for exposure, and daily magnitude of potential exposure (per person) assumes that pesticides lower total exposure potential (by population) is always more favourable compared with higher total exposure potential. Thus, the concept of 'total exposure potential' should be woven into policy strategy for reducing and/or preventing pesticides-

Figure 2: Working Suppositions that Support the Rationale for the PCE-ISys Construct

related health and environmental impact(s) in lieu of (or in conjunction with) a risk-based approach.

The Pesticides Consumer-Environmental Indexing System (PCE-ISys) is a policy evaluation framework built on principles, and indicators of agricultural economy supported by semi-quantitative methods. The model is purposed to provide a data-driven screening of population-based pesticides potential exposure associated with (presumed) economic macro-policy decisions that impact key agricultural systems inputs and outcomes, i.e., pesticides-use, agricultural land-use, and crop productivity. The PCE-ISys decision-support model is based on the principal assumption that the potential for population-level exposure together with the magnitude of potential exposure, i.e., 'total exposure potential' arises from the summation use of pesticides across the broader system of crop cultivation, food production, trade, consumption, and environment.

The PCE-ISys concept works by indexing the potential for pesticides exposure, and quantifying and indexing the magnitude of potential exposure on a 'per capita' basis. The rationale for the indexing scheme is based on the idea that substantially limiting, or preventing potential exposure at the macro-level is central to reducing pesticides related impact(s), which *can* happen when consideration is given to integrating measures of public health into policy decision frameworks that promote agricultural economy in the context of sustainable development. Figure 2 shows that the PCE-ISys concept is developed from, and buttressed by a series of working suppositions that help form the basis for the index construct.

The ten working suppositions help illuminate how a 'generalisable' system of agricultural economy manifests the reality of pesticides usage, total exposure potential, and its likely public health implications.

2.2 Index Scoring Methodology

PCE-ISys is defined by the capacity to index the total exposure potential of chemical pesticides arising from industrialised systems of agricultural economy (g-AEES), the key inputs of which include, total estimated landuse for agricultural production, total estimated output from crop seeding and cultivation, and average total annual pesticides-use all in relation to the total population cohort for a given country. This makes PCE-ISys an evaluation scheme built on 'macro-level' agricultural indicators, the purpose and scope of which serves as a decision-support tool focusing on total exposure potential in the context of **collective** governance and farmlevel decisions that may include policy directives such as implementation of GAP or IPM strategies, targeted crop, or pesticides subsidisation, or agricultural tax policy that incentivises, or limits specific farming methods and/or practices.

2.2.1 Methods-Driven Requirements for PCE-ISys Indexing

Indicators that help explain complex systems (such as g-AEES) are inherently fraught with variability, uncertainty, and randomness arising from a host of factors ranging from environmental condition(s) to policy decision-making processes; in turn, leading to challenges in how health and environmental outcomes stemming from those system(s) may be interpreted. The PCE-ISys model construct is both data-driven and stochastic, so interpretative applicability of its indexing results rely on three key elements,

First, evaluation dataset(s) of adequate sample size. Cochran's
Formula for estimating sample size (modified for 'smaller'
populations) at 95% confidence is used to determine the minimum
required sample size of nations for the project study (Bartlett II, et
al., 2001; Pourhoseingholi et al., 2013).

$$n_o = Z^2 pq/e^2 \rightarrow n = \underline{n_o}$$

 $1 + (n_o - 1)/N$

with 'p' (the proportion of the population with the defining attribute) characterised by crop production (by country), where p=0.91892, Z=1.96, e=.05, and N=224, q=1-p

- Second is data transformation of g-AEES indicator(s) from continuous to discrete variable for indexing purposes to allow for direct 'country-to-country' observational comparability on a relative basis.
- Third, a linear correlation assumption to allow for valid statistical
 inference in supporting the model indicator variable(s) within the
 PCE-ISys design construct, i.e., g-AEES, with the model's response
 output variable, i.e., EIR-IS. Figure 3. shows an (approximately
 'normal-distribution shaped') histogram of pesticides total exposure
 potential scores for all country observations from 1990 2016.

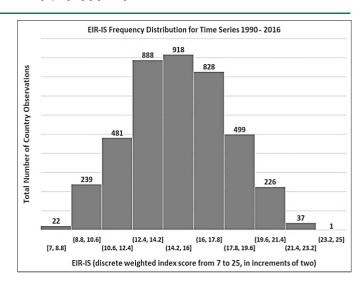


Figure 3: Frequency Distribution of Pesticides Total Exposure Potential (EIR-IS), by Country Observation for Time Series 1990-2016

Key Parameters	Percentile Category (%)	Coded Points	Comments
	Upper 25 th	5	A higher
Total Annual Pesticides Use Rate (PUR) (by country); Agricultural	Middle 50th	3	pesticide use rate is associated with
pesticides-use is directly related to the potential for human exposure	Lower 25th	1	a higher point score within the context of g- AEES
Annual Crop Production Index	Upper 25th	1	The higher the
(CPIDX) (by country); Total annual pesticides- use rate is a fixed average measure; therefore, crop productivity is inversely related to potential pesticides exposure	Middle 50th	3	crop output the lower the pesticide use
	Lower 25th	5	distribution per unit crop, and thus the lower the score.
Annual Estimated Agricultural Land Area	Upper 25th	5	Land-use is a key factor in
(AGL) (by country); The product of pesticides use intensity and total estimated area of land used for agricultural function serves as a direct indicator for pesticides tonnage	Middle 50th	3	estimating pesticides
	Lower 25th	1	tonnage. The more land area used for agriculture the higher the score.
Total Annual Estimated Population (AEP)	Upper 25th	1	Exposure potential is
(by country); Population size affects the overall potential exposure implications associated with pesticides-use within a given a country	Middle 50th	3	'diluted' with increasing population
	Lower 25th	5	relative to total average pesticides tonnage.

Figure 4: PCE-ISys Three-tiered Percentile-based Coded Point Scheme

PCE-ISys (population-based) pesticides total exposure potential is expressed as an aggregated relative measure (by country) called the Exposure Indicator Ratio-weighted Index Score, or 'EIR-IS' representing the potential for exposure, 'weighted' by the average daily magnitude of potential exposure (called 'exposure potential') on a per capita basis,

EIR-IS is derived from the sum of two relative indexing measures,

 $\bullet \quad \text{The Pesticides Consumer-Environmental Index Score (PCE-IS), and} \\$

The Exposure Indicator Ratio Score (EIR_{score})

Both metrics are discrete numeric values that correspond to continuous indicator variables. Where the variable(s) fall within one of three percentile categories (Upper 25th, Middle 50th, and Lower 25th) across the distribution of continuous variables for a given evaluation dataset determines the index/indicator score (Han et al., 2012; Toppr, 2020).

- Upper percentile = (3(n+1)/4) th term
- Median percentile = ((n+1)/2) th term
- Lower percentile = ((n+1)/4) th term

As shown in Figure 4 each percentile category is assigned a designated value, 1-,3-, or 5. '3' is the value 'coded' to continuous indicator variables that fall within the middle 50^{th} percentile of the distribution range. An assigned point score of '1' or '5' corresponds to either the upper or lower 25^{th} percentile, depending on how the respective indicator variable is assumed to behave within g-AEES.

PCE-IS represents the potential for pesticides exposure (by country) for one calendar year. The index score is expressed as,

$$PCE-IS = PUR (\%ile) + CPIDX (\%ile) + AGL (\%ile) + AEP (\%ile)$$
 (2)

and has a score range from 4 to 20 in incremental units of two. The higher the PCE index score the greater the potential for pesticides exposure.

The EIR $_{\rm score}$ represents a discrete relative value for pesticides 'exposure potential.' The score is a numeric 'weighting' factor (when combined) with PCE-IS produces a total exposure potential score (EIR-IS), with an index scale of 5 to 25 (by country). Similar to the PCE-IS scoring methodology, EIR $_{\rm score}$ is scored based on where the Pesticides Exposure Indicator Ratio (Pi $_{\rm exp}$ R) variable falls within the data distribution range of all Pi $_{\rm exp}$ R values for the given evaluation dataset (by year), seen in Figure 5.

Key Parameters	Percentile Category (%)	EIR Coded Points	Comments
PiexpR (by country); a relative measure of daily pesticides exposure potential per capita	Upper 25th	5	
	Middle 50th	3	EIR _{score} is the numeric relative
	Lower 25th	1	measure of Pi _{exp} R that is used to 'weight' PCE-IS

Figure 5: PCE-ISys Percentile-based Coded Point Scheme for PiexpR

The higher the $Pi_{exp}R$ value across the distribution range, the higher the (percentile category based) EIR_{score} . $Pi_{exp}R$ is a unitless continuous variable that represents the relative average measure of daily pesticides exposure potential that is equal to, exceeds, or is below the Pesticides Reference Indicator Ratio ($Pi_{ref}R = Pi_{ref}UC$); and is expressed as follows:

$$Pi_{exp}R = Pi_{exp}UC / Pi_{ref}UC$$
 (3)

where $Pi_{exp}UC$ (the unit-converted Pesticides Exposure Indicator) is a function of the product of the unit-converted pesticides-to-crop productivity ratio (PCPr) and farmland area per capita (FLAC)

$$\begin{aligned} Pi_{\text{exp}} &= \text{PCPr x FLAC (kg}_{\text{pesticides}} \text{ person}^{-1} \text{ year}^{-1}) \\ \downarrow \\ &\frac{\text{PCPr}_{\text{country.}} \text{ (kg}_{\text{pesticides}} / \text{ ha) x FLAC}_{\text{country.}} \text{ (ha/person)}}{\text{Annual (1-year) [unit conversion]}} &\downarrow \\ \text{(kg}_{\text{pesticides}} / \text{person-year) (1-year/365 days) (1*10^6 mg / 1 kg}_{\text{pesticides}}) \\ \downarrow \end{aligned}$$

Pesticides Exposure Indicator ($mg_{pesticides}$ person⁻¹ day⁻¹) = $Pi_{exp}UC$ (4) where,

Pesticides-to-Crop Productivity Ratio (PCPr)

ļ

Total (Annual) Pesticides Use Rate (kg/ha)

Annual Crop Production Index

Farmland Area per capita (FLAC)

1

Total (Annual) Agricultural Land Area (ha)

Annual Estimated Country Population (per.)

Next, the Pesticides Reference Indicator (Pi_{ref}UC) denotes a benchmark level representing the 95% upper bound limit of the mean (unit-converted) Pesticides Exposure Indicator value(s) for all countries (within a given evaluation dataset) that have annual total average pesticides use rate(s) less than or equal to 0.5 kg/ha.

X

Pi_{ref}UC = 95% UCL of μ_{Piexp} UC (pesticides use rate \leq 0.5 kg/ha, 'low') (5) where,

$$\mu_{\text{Piexp}}\text{UC} = \sum_{\text{Piexp}} P_{\text{lexp}} \text{UC} \text{ (pesticides use rate } \leq 0.5 \text{ kg/ha)}$$

 $\sum_{\text{countries}} \text{ (pesticides use rate } \leq 0.5 \text{ kg/ha)}$

Pesticides use rate level(s) such as 0.5 kg/ha were adopted as a modification of the Wachter & Staring guideline protocol for active ingredient use rate(s) (World Health Organization, 1990), and correspond to the economic status, and regulatory sophistication of the given country. Annual use rates of 0.5 kg/ha to 0.1 kg/ha are graded as 'low' while <0.1 kg/ha, and ≥ 1 kg/ha annual pesticides active ingredient use rate are graded as 'very low,' and 'high,' respectively. Pi_{ref}UC reflects the minimum threshold of average daily pesticides exposure potential that is rated as a 'Lower Appreciable' public health concern.

2.2.2 PCE-ISys Public Health Rating Scheme

The PCE-ISys evaluation model is not a tool designed to reflect estimation(s) of risk or impact(s) associated with the use of crop protection chemicals. Instead, [it] is a data-driven construct that produces a relative measure of pesticides-related potential exposure that corresponds to a generic qualitative rating (supported by Working Supposition 10) termed 'public health concern.' The basis for the indexing system's public health-related rating scheme is centred on three basic precepts,

- That chemical pesticides are engineered to produce target organism mortality, but also manifest varying degrees of 'collateral' toxicity to other biological species, including humans.
- That pesticides-related health impact(s) and risk are function(s) of pesticides exposure.
- That pesticides risk reduction through 'integrated' policy and planning measure(s), over the long-term, are best accomplished, and more cost-effective through prevention efforts than through (largely cost externalising) 'command and control' impact mitigation.

PCE-ISys public health rating categories correspond to pesticides total exposure potential as a function of EIR-IS or PCE-IS percentile-based scoring distribution(s). Figure 6. illustrates that the public health classification measure for the indexing system is a qualitative expression termed 'Appreciable' public health concern.

The scoring classifications across each data distribution range are ordered according to percentile range: Upper 25th%ile = Highest Appreciable, Median = Appreciable, and Lower 25th%ile = Lower Appreciable. Based on the index score distribution(s) for each of the 27 evaluation datasets, the year-to-year threshold levels for each respective percentile range for this project study was as follows (index score distributions were tabulated from data available at www.threepercentearth.org/reports-analysis/),

- EIR-IS ≥ 17 (Upper 25th), EIR-IS = 15 (Middle 50th), EIR-IS ≤ 13 (Lower 25th)
- PCE-IS ≥ 14 (Upper 25th), PCE-IS = 12 (Middle 50th), PCE-IS ≤ 10 (Lower 25th)

Response Output	Percentile Category (%)	Total Exposure Potential Rating or Exposure Potential Rating	Public Health Rating	Comments	
	Upper 25th	Highest	Highest Appreciable Public Health Concern	EIR-IS or PCE-IS (by country) are categorised into three-tiered	
EIR-IS or PCE-IS (by country)	Middle 50th	Medium to High	Appreciable Public Health Concern	percentiles based on the stochastic distribution for each	
	Lower 25th	Lower	Lower Appreciable Public Health Concern	respective evaluation dataset	

Figure 6: Public Health Rating Classification Scheme

2.3 Data Methodology

2.3.1 Data Sources

Data that reflect the model input variables for the PCE-ISys model construct are available as open access from FAO and World Bank websites. Pesticides use data was accessed from the FAO website, http://www.fao.org/faostat/en/?#data/RP, and separately downloaded in bulk as Excel files categorised by world regions Africa, Americas, Asia, Europe, and Oceania. Data for the rest of the model input variables were accessed at the following World Bank websites by doing total bulk data downloads as '.csv' files then saved as Excel '.xlsx' files, 1) for Crop Production https://data.worldbank.org/indicator/AG.PRD.CROP.XD, 2) for annual total population estimates by country, https://data.worldbank.org/indicator/SP.POP.TOTL, 3) for annual total land area by https://data.worldbank.org/indicator/AG.LND.TOTL.K2, and 4) for annual percent land area for agriculture, https://data.worldbank.org/indicator/AG.LND.AGRI.ZS. Data from the World Bank site representing the model input variables were extracted from the original downloaded spreadsheets and collated into columns in new worksheets that included data from 268 countries, world regions, and other world development classification categories.

2.3.2 Organising the Data, and Data Testing the Model

Data collected from World Bank and FAO websites were organised and managed using Microsoft Office Excel version 16.43 with data analysis functionality. The PCE-ISys working model was developed using Excel because of the transparency, and ease of use of the application's mathematical functions to generate the indicator, and index outputs by country, and by year. A 'source' dataset worksheet was used to consolidate, and organise all raw, and processed data for the project. The basic steps for the worksheet data consolidation and organising process were as follows, 1) all g-AEES (indicator variable) data were entered into the source worksheet. This included all 268 countries, world regions, and other world development classification categories, 2) all categories (except for individual countries) were culled from the source worksheet; use of Cochran's Formula at 95% confidence (section 2.2.1) estimated the minimum required sample size (n) per evaluation dataset for the project study to be (at least) 76 countries, 3) the remaining individual countries were further screened to include only those with average annual pesticides-use rate data (157 \ge n \ge 133).

Consumption rate data (by country) were available from years 1990 – 2016 (the evaluation time-series for the project study). 2016 was the terminal year of the time series because (at the time of data collection) there was no crop production index data beyond that time frame. 4) g-AEES indicator variable, total land area was unit-converted from square kilometres to hectares in order to comport with the unit expression used in the PCE-ISys model, then total agricultural land area (by year) was determined by calculating total land area (by country) as a percent of land area allocated for agriculture (by country), 5) eight additional columns were added to the source worksheet dataset.

The four initial data columns included the land area unit conversion, then calculation of total agricultural land, and PCPr and FLAC output calculations, respectively. 6) The final four additional columns included calculation and unit conversion of $Pi_{\rm exp}$ (kg/person-year) to $Pi_{\rm exp}UC$ (mg/person-day), inclusion of $Pi_{\rm ref}UC$ values, calculation of $Pi_{\rm exp}R$ (Pi_{exp}UC/Pi_{ref}UC), and then scale-adjusted by a factor of 10 (Adjusted-Pi_{exp}R = Pi_{\rm exp}UC/Pi_{\rm ref}UC x 10). Eighteen auxiliary columns were added to the source worksheet, three columns for each g-AEES indicator variable and EIR_score percentile range i.e., Excel '= percentile' function for upper 25th ('75th'), 50th, and lower 25th; and the last three auxiliary columns for index scoring PCE-IS, totalling EIR_score, and index scoring EIR-IS. All indicator variable data (by country) for twenty-seven evaluation datasets in the project study were indexed to generate PCE-IS and EIR-IS for all country observations for the time series.

2.4 PCE-ISys Model - Correlation and Variance

2.4.1 Multivariate Test for EIR-IS and g-AEES

A regression analysis was conducted to determine the strength of association between the PCE-ISys weighted index score (output/response variable), and its respective g-AEES (input) variables. First, test(s) of collinearity demonstrated no discernible correlation among indicator (input) variables. Second, it should be noted that neither indexing output trend nor model predictiveness was the focus of the regression exercise. In addition, examining the effect(s) of PCE-ISys database outliers among the 27 non-independent evaluation datasets (and its effect on model output distribution(s)), or use of nested model(s) were considered, but decided against for this particular study.

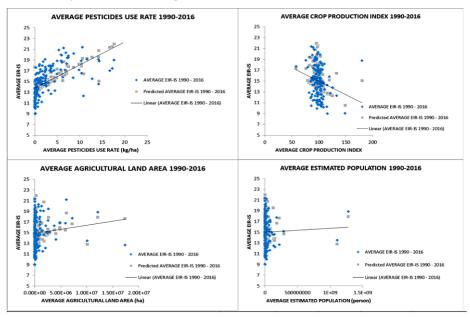


Figure 7: Average EIR-IS as a Function of g-AEES Linear Correlation and Variance

Purposed as a 'screening-level' information dissemination tool the aim, instead, was to offer a basic underpinning of whether a linear relationship exists between pesticides total exposure potential and its model input variables in the context of g-AEES (not by country), but on a global and generalisable scale. A standard multivariate analysis was employed using g-AEES input variable(s), and their respective index output(s), i.e., EIR-IS averaged for all data points within each annual evaluation dataset of the time series (by country). Figure 7. shows the EIR-IS linear response output in relation to the four key indicator variables that define the g-AEES-based model.

The g-AEES regression model shown in Figure 7 demonstrated a moderately strong association between average EIR-IS and average pesticides consumption rate, Crop Production Index, agricultural land

area, and estimated country population, with r=0.657789, and directional correlation for three of 4 input variables consistent with their assumed behaviour within g-AEES ('population' variable was equivocal). Multivariate R^2 indicated that the model explains between 42% to over 43% of the variance in average pesticides total exposure potential (F-Test Significance = 6.62×10^{-18}).

2.4.2 Multivariate Test for EIR-IS and Exposure Potential

A second regression test was conducted to examine the strength of association between average EIR-IS, and indicator variables used to derive Pi_{exp}UC. There was, again, no demonstrated collinearity. Figure 8. shows the EIR-IS linear response output in relation to the two indicator variables used to determine exposure potential, i.e., PCPr and FLAC.

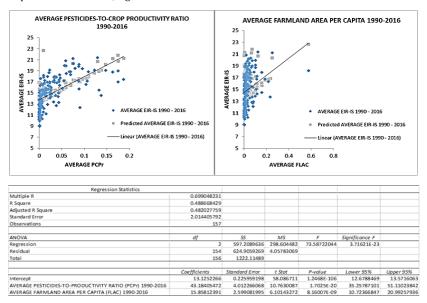


Figure 8: Average EIR-IS as a function of PiexpUC Linear Correlation and Variance

The multivariate 'exposure potential' (Pi_{exp}UC) model also demonstrated a moderately strong positive directional correlation between average pesticides total exposure potential and average daily magnitude of potential exposure (per person) with r=0.699048. Variance in EIR-IS as a function of 'exposure potential' was R^2 =0.49 (F-Test Significance = 3.72 x 10^{-23}) indicating that nearly half the variation in EIR-IS output(s) are explained by pesticides use per unit of crop productivity and agricultural land area per capita (a surrogate indicator of pesticides tonnage). All indicator variables for both models were statistically significant, except for 'Average Estimated (Country) Population,' which was marginally non-statistically significant (p-value = 0.078810616); though this occurrence was not altogether unexpected given the likely complexity of human population dynamics in relation to agricultural food systems.

The fact, however, that FLAC was both strongly statistically significant and linearly correlated to EIR-IS helps support the argument that country population (in relationship with agricultural land-use) is indeed a relevant variable (in the context of pesticides tonnage) for interpreting pesticides total exposure potential, but poses a challenge in defining its contributing influence on EIR-IS from the perspective of g-AEES, indicating that a more in-depth computational modelling exercise is likely necessary to parse out the effect of 'population' within this system.

The machinations of politics, governance, and economic activity that characterise complex 'social-environmental' systems, create inherent degrees of uncertainty, and variability in models that attempt to interpret such systems. Thus, Pearson correlation levels tangibly above 0.5 for both regression tests arguably help inspire a reasonable degree of confidence for the plausibility of PCE-ISys as a workable policy decision-support concept (Samuel and Okey, 2015). Similarly, R2 values for both regression models indicating that the index construct explains over 40% to nearly 50% of any change in the EIR-IS response variable output is an encouraging prospect for the usefulness of PCE-ISys. Why? 1) The degree of model variance indicated in both g-AEES and PiexpUC models allude to PCE-ISys agroeconomic predictor variables as basic factors associated with the modern agricultural food system, and that 2) by relying on a highly parsimonious model that precludes other potentially knotty (social, cultural, political, regulatory, and environmental) variables (that, although may 'capture' the remaining difference in model variance) minimises the risk of diminishing the transparency, and confounding the general interpretative capacity of the index output(s) that would arguably

undermine its main functional purpose and advantage as a broad-based information dissemination tool.

3. RESULTS AND DISCUSSION

3.1 Pesticides Total Exposure Potential

3.1.1 Ranking Profiles

The primary analytical feature of PCE-ISys is the capacity to (semiquantitatively) index the potential for exposure to pesticides, 'weighted' by the magnitude of potential exposure (per capita). One particular application derived from this indexing construct is the ability to generate a multi-output 'profile' that includes, EIR-IS, PCE-IS, and PiexpR used in producing a numeric ranking structure for either a single evaluation dataset or averaged over a given time series. Due to the high number of total individual indexing outputs and their associated g-AEES parameter values (~50000), all parameter-specific data and data-driven outputs (excluding PCPr, FLAC, Piexp and PiexpUC categories) for individual country observations per evaluation dataset have been made available as open access at www.threepercentearth.org/reports-analysis/. A time seriesaveraged EIR-IS ranking chart for 157 countries displayed in Table 1. (Next page) produced interesting results in terms of pesticides total exposure potential (by country) over the 27-year time frame. Each country in the average ranking chart was colour-coded according to world region.

WORLD REGIONS
AFRICA
THE AMERICAS
ASIA-PACIFIC
EUROPE
MIDDLE EAST & CENTRAL/WESTERN ASIA

Percentile-based index score threshold levels were as follows:

- Average EIR-IS = highest average total exposure potential (Highest Appreciable public health concern) ≥ 17.07407,
- 17.07407 > Average EIR-IS = medium-to-high total exposure potential (Appreciable public health concern) > 12.85185, and
- Average EIR-IS = Lower average total exposure potential (Lower Appreciable public health concern) ≤ 12.85185.

Gambia, The 14.92592593 Bhutan Malaysia 21.2222222 Nicaragua Bulgaria 14.77777778 12.85185185 El Salvado 16.92592593 14.77777778 12.77777778 20.3333333 Guatema Cyprus CANADA 12.7037037 Venezuela, RB Portuga 16.77777778 West Bank and Ga 19.7826087 North Macedo 16.6 Algeria 14.62962963 Togo 12.5555556 19.4444444 16.5555556 14.62962963 Kazakhsta 16.48148148 16.40740741 12.48148148 Maldive Greece Sri Lanka RUSSIAN FEDERATION long Kong SAR, Chi Uruguay 14.55555556 16.33333333 Israel 19.14814815 12.25925926 19.07407407 Tunisia 16.33333333 St. Kitts and Nevis 14.55555556 Madagascar 12.18518519 Costa Rica 16.11111111 14.48148148 12.18518519 14.47826087 18.85185185 Czech Repub Suriname Egypt, Arab Rep St. Lucia 18.77777778 Belgium 15.70588235 14.33333333 Ethiopia 11.66666667 18.7037037 15.6666666 14.28 11.51851852 Angola 14.25925926 14.1111111 13.96296296 Burkina Faso Norway Tanzania Lebanor AUSTRALIA Tonga Antigua and Barb 100 18.33333333 18.28 18.18518519 Seychelle Georgia Guyana Brunei Darussalam Papua New Guinea 13.88888889 Cabo Verdi 11.44444444 11.44444444 ARGENTINA 15.51851852 13.8 Congo, Rep 13.74074074 17.96296296 SOUTH KOREA, REP. 15.51851852 Cote d'Ivoire 105 11.2222222 13.74074074 inican Re Lao PDF Panama 13.51851852 13.51851852 108 108 15.37037037 10.92592593 Cameroon INDIA Senegal BRAZI 17.74074074 Kyrgyz Republ Latvia Central African Republic 10.7037037 15.14814815 13.37037037 10.7037037 TURKEY UNITED STATES 13.2962963 13.16 13.14814815 12.92592593 17.59259259 17.46153846 15.14814815 15.14814815 Botswan Barbados 10.62962963 17.37037037 17.2962963 Croatia Ghana 15.08 15.07407407 Zambia 10.47368421 10.33333333 Vietnam Chad 17.24 New Caledonia 15.07407407 SOUTH AFRICA 12.92592593 10.33333333 New Zeal Niger FRANCE 9.074074074

Table 1: Time Series-Averaged Exposure Indicator Ratio-Weighted Index Score and Rank (1990 – 2016)

Also, for the project study in this instance, the 'medium-to-high' index distribution range was further subdivided:

17.0740740

- 'high' (17.07407 > Average EIR-IS (Higher Appreciable public health concern) ≥ 15), and
- 'medium-to-lower medium' (15 > Average EIR-IS (Medium Appreciable public health concern > 12.85185).

One noticeable observation gleaned from the time-averaged evaluation appears to reveal a broad, underlying consistency between average annualised pesticides-use per area of cropland, and pesticides total exposure potential, i.e., regions of the world where use rates are deemed consistently high, or low such as in the Americas and Africa (FAOSTAT, 2021), respectively saw overall correspondingly 'highest,' and 'lower' EIR-IS outputs for these same areas. This analysis outcome also draws support from the g-AEES linear correlation and variance results.

Of nations with the highest average pesticides total exposure potential for the time series 38%, and 23% were from the Americas, and Asia-Pacific region, respectively, while 63% of nineteen G7/G20 nations evaluated in the project study demonstrated either 'high' or highest total exposure potential. On first pass, a country-by-country global perspective appears to suggest that the size of a country's economy may be a feasibly reliable

indicator for pesticides total exposure potential. However, a closer look at the time series-averaged EIR-IS appears to indicate that developing nations with known 'transitioning' economies may be consistently more vulnerable to higher pesticides total exposure potential. Examples of such places include, Belize, Malaysia, Ecuador, Colombia, Costa Rica, and Fiji, countries that (generally speaking) place a relatively high premium on economic growth and development, while in some cases discounting principles and applications of sustainability (Wendling et al., 2020).

A wide-ranging, prospective policy analysis of the potential factors that may affect EIR-IS, such as human development status, agricultural GDP, degree of regulatory sophistication, or measures of socio-cultural attitudes toward pesticides may be useful in providing greater insight into possible solution(s) for reducing and/or preventing pesticides-related impact(s) arising from politically driven, agroeconomic systems.

3.1.2 Asia-Pacific Region and ASEAN

The PCE-ISys evaluation study included twenty-nine countries located throughout East Asia, South Asia, ASEAN, and Oceania, under the broad heading of 'Asia-Pacific.' Figure 9. illustrates a vertical EIR-IS index chart showing pesticides total exposure potential across the Asia-Pacific region from 1990 – 2016 (by country, region, and worldwide).

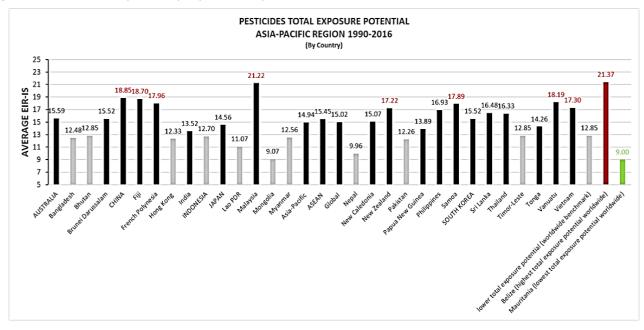


Figure 9: Time Series-Averaged EIR-IS for the Asia-Pacific Region (by country)

Asia-Pacific as a regional designation produced an average EIR-IS of 14.94 (versus 15.02 globally) for the 27-year time series, indicating that agricultural food systems across this region are (on average) characterised by pesticides-related 'Appreciable' public health concern qualified with a sub-group rating of 'medium' total exposure potential. A more detailed look at the Asia-Pacific indexing results reveal that ten of 29 nations (34.5%) across this region produced average EIR-IS ratings at, or below the 12.85 (lower total exposure potential) benchmark, of which Hong Kong (EPI=N/A) is HDI-rated as 'very high' (0.949), and Indonesia EPI=37.8, HDI=0.718 is G20 designated. Over half of the remaining developing nations in this sub-group (excluding Mongolia EPI=32.2, HDI=0.737, Bhutan EPI=39.3, HDI = 0.654, and Bangladesh EPI=29, HDI = 0.632) are largely rated as having medium HDI (on the lower range), and below average environmental performance index score(s) (EPI < 46.44), they include, Lao PDR, Myanmar, Nepal, Pakistan, and Timor-Leste (UNDP Human Development Index, 2021; Wendling et al., 2020).

This indexing output 'dynamic' appears consistent with evidence that generally lesser developed countries that tend to maintain a relatively more subsistence, or local market index of agriculture may be (on average) less apt to rely on pervasive pesticides-use (which, in some cases, limits pesticides tonnage) compared with their more developed counterparts (World Health Organization, 1990). Of the 'highest total exposure potential' sub-group of Asia-Pacific nations, the majority are recognised as 'developing' (New Zealand EPI=71.3, HDI=0.931 being the exception), and having 'transitioning' economies (with China being a G20). They include, for example, China, Fiji, Malaysia, Samoa, and Vietnam (UNDP Human Development Index, 2021; Wendling et al., 2020).

Asian-Pacific countries undergoing rapid economic development are largely faced with concomitant health and environmental impacts, especially evident in China, and across most of ASEAN. Thus, it is not surprising that governance and policy measures that direct agricultural food systems within these same jurisdictions would also experience (on average) consistently higher systemic pesticides-use rates. Table 2. displays environmental performance index scores, UN human development indexes, the time series-averaged pesticides-use rates, and their associated EIR-IS for the 'highest' and 'lower' total exposure potential Asia-Pacific sub-groups (Wendling et al., 2020).

Table 2: Comparison of Asia-Pacific 'Highest' and 'Lower' Total Exposure Potential Sub-Groups					
Countries with ('highest total exposure potential')	EPI	HDI	Average Pesticides-Use Rate (kg/ha)	Average EIR-IS	
China	37.3	0.761	10.36	18.85	
Fiji	34.3	0.743	1.86	18.70	
Malaysia	47.9	47.9 0.810 6.43	21.22		
Samoa Vietnam	37.3	0.715	0.99	17.89	
	33.4	0.704	2.49	17.30	
Countries with ('lower total exposure potential')	EPI	HDI	Average Pesticides-Use Rate (kg/ha)	Average EIR-IS	
Lao PDR	34.8	0.613	0.013	11.07	
Myanmar Nepal Pakistan	25.1	0.583	0.176 0.092 0.246	12.56	
	32.7	0.602		9.96	
	33.1	0.557		12.26	
Timor-Leste	35.3	0.606	0.004	12.85	

PCE-ISys indexing outputs broadly demonstrate that by-and-large, and irrespective of their EPI 'sustainability' rating higher HDI-rated developing countries within the Asia-Pacific regional designation (generally associated with rapid economic expansion efforts), possess agricultural food systems that appear more reliant on pervasive chemical pesticides use compared to less developed nations within the region. Also, it can be reasonably surmised that the time series-averaged EIR-IS outcomes for each of the countries within their respective sub-groups are evidenced by rates of crop protection chemical use that are consistent with the Wachter & Staring use-guideline criteria template that associate higher or lower active ingredient use-rates with corresponding levels of country economic development, and regulatory capacity (World Health Organization, 1990). Evidence-based information derived from PCE-ISys

outputs used in conjunction with other broad-based, empirically derived metrics, such as HDI, GDP, or GNI, for example, may offer policymakers and/or regulatory analysts with a viable (policy analysis) alternative to the dominant risk-benefit based approach to agroeconomic governance.

3.1.3 ASEAN Test Case - Malaysia

Agriculture is an economic mainstay of ASEAN, with farming and fishing industries in 2018 generating 10.6% of total GDP across the region, as well as contributing up to 72% of employment (by country) (Food and Agriculture Organization, 2020). At the same time, across large swaths of the region use of chemical pesticides, perceived as the policy solution of highest convenience for 'ensuring' optimally higher crop yields in line with agricultural intensification goals is marked by surplus evidence of deleterious health and environmental outcomes (Economy and Environment Institute, 2017; EU Parliament, 2021; Lam et al., 2017; Gupta, 2012; FAO-Situation Analysis Report, 2021).

One particularly glaring observation from the year-to-year, and time series-averaged components of the project study was the exceedingly high EIR-IS value(s) for Malaysia. In fact, worldwide, over the 26-year span, only the nation of Belize produced a higher average EIR-IS (see Figure 9), with their being only a 0.7% difference in average index between the two countries. Thus, Malaysia offers a comparative 'point-of-reference' test case for ASEAN, and Asia-Pacific nations (if not, worldwide) in how EIR-IS can be used to screen for the potential public health implications associated with pesticides input(s) within agricultural food systems.

Vietnam was selected for comparative analysis with Malaysia because of the former's similar time series-averaged EIR-IS threshold level and 'Highest Appreciable' public health concern rating. A comparison with lower total exposure potential nations was also deemed necessary. Lao PDR was chosen because of its below benchmark 11.07 time seriesaveraged EIR-IS (lowest among ASEAN nations), and its measurably lower HDI rating of 0.613; and Indonesia was selected for comparison, also due to its below benchmark rating of 12.70, and its G20 designation. The difference in HDI between the two nations, and Indonesia's comparatively larger economy provide a more enhanced contrast when comparing pesticides total exposure potential with Malaysia. Figure 10. shows the year-to-year trend in annual pesticides use rates for Malaysia, Vietnam, PDR. Indonesia. and Lao Data available www.threepercentearth.org/reports-analysis/.

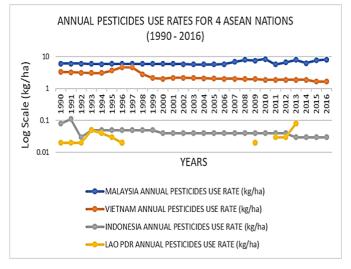


Figure 10: Annual Pesticides Use Rate Trends for Four ASEAN Nations

The average pesticides use rate for Malaysia from 1990-2016 was 6.43 kg/ha compared to Vietnam (2.49 kg/ha), Indonesia (0.045 kg/ha), and Lao PDR (0.01333 kg/ha), exceeding Vietnam's average use rate by 61%, while surpassing Indonesia and Lao PDR use rate trends by an astounding 14.34 and 48.2 orders of magnitude, respectively. According to the Wachter & Staring pesticides use-rating guideline, annual use rates of pesticides active ingredient of, or exceeding 5 kg/ha is deemed 'very high' (World Health Organization, 1990). Also, worth noting is that pesticides use has historically been limited within Lao PDR's agricultural food system (including average use rates approaching zero from 1997-2008, 2010, 2014-2016) possibly reflecting a lesser degree of industrialised farming compared with neighbouring countries such as Indonesia, Malaysia, Thailand, and Vietnam. Next, Figure 11. illustrates the year-to-year relationship(s) reflecting EIR-IS as a function of PCPr for all four countries.

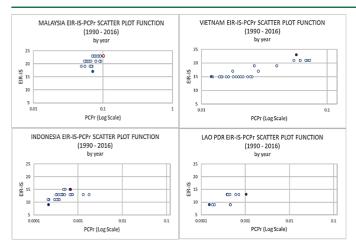


Figure 11: Pesticides Total Exposure Potential as a Function of the Pesticides-to-Crop Productivity Ratio

PCE-ISys 'average' correlation and variance tests point to annual pesticides use rate and Crop Production Index as the strongest indicator variables within the model, with Pesticides-to-Crop Productivity Ratio (PCPr) being the strongest contributing indicator of EIR-IS (regression

coefficient = 43.18, p-value = 1.70×10^{-20}) (see Figure 7 and 8). Analysis of the scatter plot results show:

- (positive) moderately linear cluster(s) for all four nations, but with Lao PDR, and Vietnam's respective profiles exhibiting visibly more data dispersion, the latter of which could be interpreted as a function of the abrupt, then incremental decline in average annual pesticides usage observed after 1997 (see Figure 10).
- a concentrated cluster pattern of higher EIR-IS levels for Malaysia congruent with persistently concentrated levels of 'high-to-very high' pesticides use per unit of crop productivity (per hectare) over the time series, with observed levels of pesticides use to crop productivity for Indonesia's and Lao PDR's g-AEES consistently 1-2 orders of magnitude below Malaysia's agroeconomic system (data available at www.threepercentearth.org/reports-analysis/).
- 3) that for Vietnam, pesticides use levels relative to its crop production indices appeared more variable, but consistent with its decreased usage rates and increased productivity trends over the 26-year span (data available at www.threepercentearth.org/reports-analysis/).

Next, a comparison of highest and lowest EIR-IS to PCPr 'pair-function' offer additional perspective on interpreting the EIR-IS-PCPr scatter plots. Table 3. shows the change in the difference in magnitude between highest and lowest PCPr for Vietnam, Indonesia, and Lao PDR compared to Malaysia for the time series.

Table 3: Highest and Lowest Scatter Plot EIR-IS to PCPr 'Pair-Function' PCPr Ratio Difference					
COUNTRY	HIGHEST SCATTER PLOT 'PAIR-FUNCTION' (red dots in Figure 11)	LOWEST SCATTER PLOT 'PAIR-FUNCTION' (blue dots in Figure 11)	HIGHEST 'PAIR-FUNCTION' PCPr RATIO (Malaysia relative to comparison nation)	LOWEST 'PAIR-FUNCTION' PCPr RATIO (Malaysia relative to comparison nation)	HIGHEST to LOWEST 'PAIR-FUNCTION' PCPr RATIO DIFFERENCE (Malaysia relative to comparison nation)
MALAYSIA	EIR-IS=23, PCPr=0.101920	EIR-IS=17, PCPr=0.07146			
VIETNAM	EIR-IS=23, PCPr=0.05713	EIR-IS=15, PCPr=0.01202	1.78x	5.95x	(4.17x)
INDONESIA	EIR-IS=13, PCPr=0.00069	EIR-IS=9, PCPr=0.00022	147.71x	324.81x	(177.1x)
LAO PDR	EIR-IS=13, PCPr=0.00105	EIR-IS=9, PCPr=0.00015	97.07x	476.4x	(379.3x)

The magnitude of difference in highest and lowest EIR-IS to PCPr 'pairfunction' PCPr ratio for Malaysia relative to Vietnam (4.17x), Indonesia (177.1x), and Lao PDR (379.3x), respectively, is consistent with the latter three nations (especially Vietnam) either reducing, or maintaining considerably lower pesticides consumption per unit of crop productivity in contrast to Malaysia (data available www.threepercentearth.org/reports-analysis/), whose collective agricultural policy goals likely stayed the economic course over the 27year time series. 'Brackets in bold' indicate that the magnitude of difference was driven by the lowest 'pair-function' ratio. Table 3. results interpretation draws support from results displayed in Table 4. showing the highest and lowest EIR-IS to PCPr scatter plot 'pair-function' range profiles for Malaysia, Vietnam, Indonesia, and Lao PDR.

Table 4: Comparison of the Range of Difference in Highest and Lowest PCPr (by country)				
COUNTRY	Δ HIGHEST to LOWEST PCPr (by country)	% Δ HIGHEST to LOWEST PCPr RELATIVE to HIGHEST PCPr (by country)	Δ EIR-IS	
MALAYSIA	0.03046	29.89%	-6	
VIETNAM	0.04511	78.95%	-8	
INDONESIA	0.00047	68.59%	-4	
LAO PDR	0.00089	85.34%	-4	

Higher percentage change(s) between the difference in highest and lowest PCPr (by country) relative to highest PCPr (by country) denotes either a greater range of reduction in pesticides use per unit of crop productivity for each hectare of farmed land (per annum), or static use-rates relative to crop output coupled with measurable crop productivity increases. Table 4 results show a comparatively sizable difference in the range of reduction in (or consistently lower) use of pesticides for Vietnam (+49%), Indonesia (+39%), and Lao PDR (+56%) compared to Malaysia. Malaysia's six-point EIR-IS decrease at its minimum range turned out to be a statistical outlier reflecting a largely 'non-diminished' relative effect, i.e., pesticides use-rates data for the country (over the time series) remained consistently 'very high,' as did its overall index pattern with no change in its public

 $health \ rating \ category, despite \ considerable \ increases \ in \ crop \ productivity \ (data \ available \ at \ www.threepercentearth.org/reports-analysis/).$

Findings from the scatter plot analysis point to pesticides consumption relative to crop productivity as a reasonable indicator corollary to total exposure potential. The broad conclusion drawn from interpretation of the EIR-IS to PCPr scatter plot results (corroborated by FAO and World Bank-sourced data, www.threepercentearth.org/reports-analysis/) is that the ratio of pesticides use to agroeconomic productivity for Malaysia, skewed by 'very high' average pesticides use rates, likely contribute to the country's persistently elevated pesticides total exposure potential. Ministry coordinated policy analysis efforts targeting issue(s) of 'high proportional use-to-productivity' within Malaysia's agricultural food system may serve to reduce future (per capita) health and environmental impact(s) from agricultural pesticides use.

Future research and policy analysis aimed at validating the decision-support functionality of PCE-ISys may include, charting usage trends in conjunction with agricultural land-use changes, and/or evaluating similar scatter plot profiles for other Asia-Pacific nation sub-groups as a way of ascertaining a more comprehensive picture of potential pesticides impact(s) arising from regional food systems, and to what extent those potential impact(s) are shaped by conventional versus sustainable agricultural practices. Other research related consideration(s) for PCE-ISys may involve examining annual Pi_{exp}UC trends relative to registered crop protection chemicals (by country) as a way of extrapolating proportional risk from those select pesticides groupings.

Most indexing systems with policy and/or business application(s) are designed to disseminate 'units' of information on a broadly 'generalisable' scale, captured within a defined scope of time and space context in addressing a given social, economic, or environmental issue (Consumer Finance Institute, 2021; Gorai, AK. and Goyal, P, 2015; Kookana, RS., et al., 2005; Kovach, J., et al., 1992). In this respect, PCE-ISys is no different from other indexing models in that its algorithm processes data drawn from a limited set of parameters, i.e., pesticides use, crop productivity, agricultural land, and population.

One obvious limitation of this type of heuristic evaluation regimen is that the indexing outputs do not necessarily allow for inferential interpretation

beyond the scope of its defined parameters. For PCE-ISys that would be g-AEES. Concomitantly, however, what the PCE-ISys model lacks in capability to, for example quantify pesticides impact is replaced by the power of its indexing output(s) to prospectively reframe the debate about the types of measurement outcomes (qualitative vs. quantitative, or precautionary vs. risk-based) that should be prioritised in helping guide agricultural policy-based decision making, especially given that the economic and environmental reality of the world is not 'compartmentalised,' but is in fact based on the interconnectivity [of, and within] social and ecological systems.

4. CONCLUSION

As the Asia-Pacific region, and more specifically ASEAN, begin remission from the COVID-19 pandemic, the resiliency of Southeast Asia's agricultural economy will be showcased. A prime opportunity exists for governments, economic participants of food producing systems, and civil society to begin deliberating in earnest the existing limitations of current risk-based pesticides management for the region. Population across the ASEAN region is projected to exceed 740 million people by 2035, of which a monumental task lies ahead to forge sustainable agricultural food systems that comport with UN SDG target indicators such as 2.4, 3.9 and 6.3. The Pesticides Consumer-Environmental Indexing System (PCE-ISys) is a novel, semi-quantitative framework designed to be a broad-based, decision-support screening tool that works by integrating salient evidence-based information into agroeconomic and environmental policy analysis.

This project study demonstrates the policy-relevant indexing application(s) of PCE-ISys, painting a somewhat nuanced, yet concerning picture of pesticides use throughout ASEAN, and the Asia-Pacific region. By-and-large, agricultural pesticides use remains systemic and expansive, likely posing continued health and environmental risk(s) for this area of the world. Alternatives to largely risk assessment-derived health-based regulatory policy are needed. 'Systems-based' indexing models such as PCE-ISys can be employed to 1.) encourage governing bodies to transition towards harmonised policy concepts that more readily foster sustainable agricultural food systems, and 2.) promote research to further the discourse in sustainable development policy, specifically in order to meaningfully address the inefficient, yet enduring 'policy-compartmentalising' of crop protection chemicals use in food systems, and its associated long-standing resultant impacts to ecological and human health.

ACKNOWLEDGEMENTS

Heartfelt professional acknowledgements go to Ted Schettler and Sandie Ha. Dr. Schettler is the Science Director for the Science and Environmental Health Network and sits on the advisory board for the Collaborative on Health and the Environment. He offered his time to review, and critically evaluate the initial draft iterations of this research article. Dr. Ha is an Assistant Professor with the Graduate Public Health Programme at the University of California, Merced where she does epidemiological research on the effects of air pollution, ambient heat, and agricultural pesticides on perinatal and postnatal outcomes. She offered substantive guidance and consultation regarding statistical testing of the PCE-ISys model.

REFERENCES

- Aktar, W., 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2 (1), Pp. 1-12.
- Bartlett, J.E., 2001. Organizational research: appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19 (1), Pp. 43-50.
- Benbrook, C.M., Davis, D.R., 2020. The dietary risk index system: a tool to track pesticide dietary risk. Environmental Health, 19 (103), Pp. 1-18.
- Bonmatin, J.M., 2015. Environmental fate and exposure; neonicotinoids and fiprinol. Environmental Science and Pollution Research, 22, Pp. 35-67.
- Boxall, A.B.A., 2009. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environmental Health Perspectives, 117 (4), Pp. 508-514.
- Chou, W.C., 2019. Prioritization of pesticides in crops with a semiquantitative risk ranking method for Taiwan postmarket monitoring program. Journal of Food and Drug Analysis, 27, Pp. 347-354.

- Corporate Finance Institute. https://corporatefinanceinstitute.com/resources/knowledge/economics/consumer-price-index-cpi/ (accessed 31 March 2021).
- Del Prado-Lu, J.L., 2015. Insecticide residues in soil, water, and eggplant fruits and farmers' health effects due to exposure to pesticides. Environmental Health and Preventive Medicine, 20, Pp. 53-62.
- Economy and Environment Partnership for Southeast Asia. 2017. The impact of pesticide use on human health: a case study from Myanmar. EEPSEA, Ho Chi Minh City, Vietnam. (2017-PB3). https://eepseapartners.org/the-impact-of-pesticide-use-on-human-health-a-case-study-from-myanmar-2/ (Accessed 30 March 2021).
- European Parliament Directorate-General for External Policies, Policy Department. 2021. The use of pesticides in developing countries and their impact on health and the right to food. DEVE committee, Brussels, Pp. 653.622.
- Fernandez-Cornejo, J., 1998. Issues in the economics of pesticide use in agriculture: a review of the empirical evidence. Review of Agricultural Economics, 2 (2), Pp. 462-488.
- Food and Agriculture Organization of the United Nations, FAOSTAT. http://www.fao.org/faostat/en/#data/EP/visualize (accessed 31 March 2021).
- Food and Agriculture Organization of the United Nations. 2020. Southeast Asian nations examine the state of food systems to ensure recovery and resilience in a post-COVID-19 era. FAO news. https://www.fao.org/asiapacific/news/detailevents/en/c/1295300/
- Food and Agriculture Organization. 2021. Pesticides Monitoring Programme in Association of Southeast Asian Nations (ASEAN). Situation Analysis Report, Bangkok. https://doi.org/10.4060/cb4742en.
- Gereslassie, T., 2019. Determination of occurrences, distribution, health impacts of organochlorine pesticides in soils of central China. International Journal of Environmental Research and Public Health, 16 (146), Pp. 1-18.
- Glass, E.H., Thurston, D.H., 1978. Traditional and modern crop protection in perspective. BioScience, 28 (2), Pp. 109-115.
- Gorai, A.K., and Goyal, P., 2015. A review on air quality indexing system. Asian Journal of Atmospheric Environment, 9 (2), Pp. 101-113.
- Han, J., 2012. Data Mining: Concepts and Techniques, Third ed. Elsevier, Amsterdam.
- Hazell, P.B.R., 2009. The Asian Green Revolution. IFPRI Discussion Paper 00911. Washington, D.C. International Food Policy Research Institute (IFPRI).
- Kennedy, M.C., 2019. Modelling aggregate exposure to pesticides from dietary and crop spray sources in UK residents. Environmental Science and Pollution Research International, 26 (10), Pp. 9892-9007
- Kookana, R.S., 2005. Pesticide impact rating index a pesticide risk indicator for water quality. Water, Air, and Soil Pollution: Focus, 5, Pp. 45-65.
- Kovach, J., 1992. A method to measure the environmental impact of pesticides. New York's Food and Life Sciences Bulletin, 139, Pp. 1-8.
- Kroman, P., 2011. Use of the environmental impact quotient to estimate health and environmental impacts pesticide usage in Peruvian and Ecuadorian potato production. Journal of Environmental Protection, 2, Pp. 581-591.
- Lam, S., 2017. Emerging health risks from agricultural intensification in Southeast Asia: a systematic review. International Journal of Occupational and Environmental Health, 23 (3), Pp. 250-260.
- Leach, A.W., and Mumford, J.D., 2008. Pesticide environmental accounting: A method for assessing the external costs of individual pesticide applications. Environmental Pollution, 151, Pp. 139-147.
- Lencucha, R., 2020. Agricultural production: a scoping review to inform research and policy on healthy agricultural commodities. Globalization and Health, 16, Pp. 1-15.

- Li, S., 2019. Analysis of the agricultural economy and agricultural pollution using the decoupling index in Chengdu, China. International Journal of Environmental Research and Public Health, 16, Pp. 1-11.
- Muhammetoglu, A., 2010. Evaluation of the environmental impact of pesticides by application of three risk indicators. Environmental Forensics, 11, Pp. 179-186.
- Nicolopoulou-Stamati, P., 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4 (148), Pp. 1-8.
- Obilo, O.P., 2006. Integrated pest management (IPM) and good agricultural practices (GAP) in relation to food security: need for government policy for successful implementation. International Journal of Agriculture and Rural Development, 7 (1), Pp. 80-84.
- Organisation of Economic Co-operation and Development. 2018.

 Considerations for assessing the risks of combined exposure to multiple chemicals. Environment, Health and Safety Division, Environment Directorate, Paris. (Series on Testing and Assessment No. 296).
- Paddock, W.C., 1970. How green is the green revolution? BioScience, 20 (16), Pp. 897-902.
- Pingali, P.L., 2001. Environmental consequences of agricultural commercialization in Asia, Environment and Development Economics, 6 (4), Pp. 483-502.
- Pingali, P.L., 2012. Green revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America, 109 (31), Pp. 12302-12308.
- Pinstrup-Andersen, P., 2002. Food and agricultural policy for a globalizing world: preparing for the future. American Journal of Agricultural Economics, 84 (5), Pp. 1201-1214.
- Popp, J., 2013. Pesticides productivity and food security: A review. Agronomy for Sustainable Development, 33, Pp. 243-255.
- Popp, J., and Hantos, K., 2011. The impact of crop protection on agricultural production. Studies in Agricultural Economics, 113 (1), Pp. 1-22.
- Pourhoseingholi, M.A., 2013. Sample size calculation in medical studies. Gastroenterology and Hepatology from Bed to Bench, 6 (1), Pp. 14-17
- Pretty, J., and Waibel, H., 2005. Paying the price: The full cost of pesticides. In J. Pretty (Eds.), Pesticides Detox: Towards a More Sustainable Agriculture. Taylor & Francis Publishing., Pp. 40-54.
- Repetto, R., 1986. Pesticide subsidies in the third world: bad policy. Issues in Science and Technology, 2 (3), 20-21.
- Reus, J., 2002. Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agriculture, Ecosystems & Environment, 90, Pp. 177-187.
- Rice, Pamela, J., 2007. Advances in pesticide environmental fate and exposure assessments. Journal of Agricultural and Food Chemistry, 55 (14), Pp. 5367-5376.
- Rose, D.C., 2016. Decision support tools for agriculture: towards effective design and delivery. Agricultural Systems, 149, Pp. 165-174.
- Samuel, M., Okey, L.E., 2015. The relevance and significance of correlation in social science research. International Journal of Sociology and Anthropology Research, 1(3), Pp. 22-28.
- Sharma, A., 2019. Worldwide pesticide usage and its impact on ecosystem. SN Applied Sciences, 1 (1446). https://doi.org/10.1007/s42452-019-1485-1 (Accessed 31 March 2021).
- Sherrick, B., 2017. Updated farmland values and indexing tools 2017. https://farmdocdaily.illinois.edu/2017/08/updated-farmland-values-indexing-tools-2017.html. (Accessed 31 March 2021).

- Skevas, T., 2012. Economic analysis of pesticide uses and environmental spill overs under a dynamic production environment. PhD Thesis. Wageningen University.
- Soudani, N., 2020. Environmental risk assessment of pesticides uses in Algerian agriculture. Journal of Applied Biology & Biotechnology, 8 (5), Pp. 36-47.
- Surminski, S., and Williamson, A., 2012. Policy indexes what do they tell us and what are their applications? The case of climate policy and business planning in emerging markets. Working Paper 101. Leeds, London: Centre for Climate Change Economics and Policy (CCCEP). [dataset] Three Percent Earth Foundation, Reports and Analysis. https://www.threepercentearth.org/reports-analysis/ (accessed 22 November 2021).
- Three Percent Earth Foundation. 2021. The Pesticides Consumer-Environmental Indexing System Project Study Report. Pakkret, Nonthaburi, Thailand. (Accessible online at https://www.threepercentearth.org/reports-analysis)
- Toppr. https://www.toppr.com/guides/maths-formulas/quartile-formula/#:~:text=First%20Quartile(Q1)%3D,known%20as%20th e%20upper%20quartile (accessed 31 March 2021).
- Udias, A., 2018. A decision support tool to enhance agricultural growth in the Mékrou river basin (West Africa). Computers and Electronics in Agriculture, 154, Pp. 467-481.
- United Nations Development Programme, Human Development Reports. http://hdr.undp.org/en/content/latest-human-development-index-ranking?utm_source=EN&utm_medium=GSR&utm_content=US_UN
- DP_PaidSearch_Brand_English&utm_campaign=CENTRAL&c_src=C ENTRAL&c_src2=GSR (accessed 19 November 2021). United Nations Environment Programme. 2004. Health & Environment,
- tools for effective decision-making. WHO-UNEP Health and Environment Linkages Initiative (HELI), Review of Initial Findings. Geneva: WHO/UNEP Health and Environment Linkages Initiative.
- United Nations Sustainable Development Goals. https://www.un.org/sustainabledevelopment/hunger/ (accessed 30 March 2021).
- United States International Trade Commission. 2020. Global economic impact of missing and low pesticides maximum residue levels, vol.
 1. Office of External Relations, Washington D.C. (Publication No. 5071).
- Van Bol, V., 2005. Pesticide indicators: a study case in Belgium using the index of load. Technical Report. Brussels: Federal Public Service Health, Food Chain Safety and Environment.
- Van Bol, V., Claeys, S., Debongnie, P., 2003. 'Pesticide Indicators', *Pesticide Outlook*, 14 (4), Pp. 159-163.
- Wendling, ZA., 2020. 2020 environmental performance index. New Haven: Yale Center for Environmental Law & Policy. [dataset] World Bank Data. https://data.worldbank.org/indicator/AG.PRD.FOOD.XD (accessed 30 March 2021).
- World Health Organization. 1990. Public health impact of pesticides used in agriculture. Report. Geneva: World Health Organization (WHO).
- Zhang, W., 2018. Global pesticide use: profile, trend, cost / benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences, 8 (1), Pp. 1-27.
- Zilberman, D., 1991. The economics of pesticides use and regulation. Science, 253 (5019), Pp. 518-522.
- Zilberman, D., and Millock, K., 1997. Pesticides use and regulation: making economic sense out of externality and regulation nightmare, Journal of Agricultural and Resource Economics, 22 (2), Pp. 321-332.

