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 The issue of ASEAN food security has led to chemical pesticides-driven policy directives as economic 
convention for protecting crop yields while concomitantly conferring an implicit ecological and health risk-
based ‘trade-off’ that works to undermine SDG target indicators 2.4, 3.9, and 6.3. In this study the Pesticides 
Consumer-Environmental Indexing System (PCE-ISys), a conceptual heuristic ‘systems-based’ framework is 
proposed to explore needed policy-informing option(s) beyond the largely cost-externalising rubric of 
chemical crop protection management, by indexing (the potential for and magnitude of potential) pesticides 
exposure (EIR-IS) using a semi-quantitative tiered percentile-based, continuous-to-discrete variable 
transform that captures the stochastic distribution arising from the ‘generalisable’ interconnectivity of 
political governance, agricultural economy, and natural environment. 1990-2016 indexing results revealed 
‘high’ EIR-IS levels for 52% and 63% of Asia-Pacific and ASEAN nations, respectively, with 28% of Asia-Pacific 
countries scoring at ‘highest’ indexing levels demonstrating pervasive and expansive pesticides-use and/or 
tonnage contrary to IPM sustainable agricultural practices. 
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1.   INTRODUCTION 

Around the middle-to-late twentieth century rapid population growth, and 
increased food demand helped drive the impetus for what would become 
the green revolution, a set of broad technological, agricultural, and 
economic policy directives aimed at ending food hunger across large 
swaths of the developing world such as Southeast Asia (ASEAN).  
Producing sufficient crop output to feed millions of people (over a 
relatively short-term) necessitated a shift from subsistence farming to 
high production volume agricultural methods dependent upon intensive 
use of land and natural resources (Hazell 2009; Paddock, 1970; Pingali, 
2012).  Today, the aim of global food security is set forth in United Nations 
(UN) Sustainable Development Goal (SDG) 2 (United Nations Development 
Programme, 2021).  

1.1   Agroeconomic Systems, Pesticides, and Human Health Risk 

Agricultural intensification in line with green revolution policies was (and 
still is) characterised by the adoption of pervasive chemical pesticides-use 
as economic convention for protecting crop yields (EU Parliament, 2021; 
Fernandez-Cornejo et al., 1998; Glass and Thurston, 1978; Pingali, 2001; 
Pinstrup-Andersen, 2002; Popp et al., 2013; Popp and Hantos, 2011; 
Repetto, 1986; Sharma et al, 2019; Zhang, 2018; Zilberman et al., 1991).  
Worldwide, pesticides are largely managed by way of a cost-benefit 
derived regulatory approach defined by quantitation of risk that 
extrapolates ‘safe’ or ‘acceptable’ exposure levels from toxicity study data, 
i.e., MRLs.  The outcome has been (and is) a politically tolerated (if not 
widely accepted) risk-based ‘trade-off’ with health and environment 
despite the ever-growing repository of information demonstrating the 
ecological and public health impacts associated with their use (United 

States International Trade Commission, 2020; Zilberman et al., 1991; 
Zilberman and Millock, 1997).   

This compromise, however, arguably works to fundamentally undermine 
the purpose of SDG target indicators such as 2.4, 3.9, and 6.3.    The 
convergence of numerous factors including, pesticides physico-chemical 
properties, conditions of climate, air, land, and water, as well as collective 
political and regulatory decision-making aimed at meeting food 
consumption demand and economic growth objectives all potentially 
influence population-based risk from high production volume chemical 
farming pesticides (Organisation for Economic Co-operation and 
Development, 2018) commonly used within (highly complex) social-
environmental systems of food and agriculture (Bonmatin et al., 2015; 
Boxall et al., 2009; Del Prado-Lu, 2015; Fernandez-Cornejo et al., 1998; 
Gereslassie et al., 2019; Kennedy et al., 2019; Obilo et al., 2006; Rice et al., 
2007; Skevas, 2012; United Nations Environment Programme-HELI, 
2004).  Figure 1 depicts a diagram of a complex ‘generalisable’ 
agroeconomic environmental system. 

Development-focused policy that guide systems of agricultural economy 
have resulted in a strong propensity for pesticides exposure at the 
population-level (Aktar et al., 2009; Bonmatin et al., 2015; Economy and 
Environment Institute, 2017; EU Parliament, 2021; Gereslassie et al., 
2019; Lam et al., 2017; Pingali, 2001).  Conventional agroeconomic policy 
regimens rarely (if at all) take into account the health and environmental 
impact(s) of likely residual concentration(s) found in food commodities, 
as well as almost certain contamination of air, soil, and water; a 
shortcoming further reinforced by risk-based regulatory policy  (Del 
Prado-Lu, 2015; Leach and Mumford, 2008; Pretty and Waibel, 2005; 
Aktar et al., 2009; EU Parliament, 2021;  Obilo et al., 2006; Zillberman and 
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Millock, 1997).  An exploration of decision-support option(s) aimed at 
harmonising public health principles and measures with agricultural food 
systems policy is logical for evolving beyond a largely ‘cost-externalising’ 
governance approach. 

 

Figure 1: Diagram of a ‘generalisable’ agroeconomic environmental 
system (g-AEES) 

1.2   Indexing as a Policy Decision-Support Tool  

Policy decision-support is an essential informational component for 
helping guide governance-based decision making such as addressing the 
role of agriculture in achieving economic goals tied to food production, 
trade, and consumption (Lencucha et al., 2020; Rose et al., 2016; Udias et 
al., 2018). Indexing is a widely accepted, and reasonably transparent 
heuristic approach for evaluating relevant data in support of specific or 
broad policy goals across a full range of social, economic, and 
environmental issues, such as air quality, monetary policy, and pesticides 
impact(s) (Corporate Finance Institute, 2021; Gorai and Goyal, 2015; 
Kovach et al, 1992; Sherrick, 2017; Surminski and Williamson, 2012; 
World Bank, 2021).  For pesticides this type of evaluation device is 

principally designed to comparatively score or rank chemicals, or 
chemical-related outcomes for purposes of risk reduction.   

Pesticides scoring frameworks including the environmental impact 
quotient (EIQ) used in support of IPM, and the pesticides environmental 
risk indicator model (PERI) used in farm-level decision(s) to limit 
pesticides groundwater contamination are designed to index based on 
physico-chemical, environmental, and/or health related parameters, the 
former using a simple (5=high, 3=medium, 1=low) coding system 
corresponding to pesticides toxicity and physico-chemical reference 
values, and the latter relying on ecotoxicity and Kow values, as well as the 
groundwater ubiquity score (GUS) (Benbrook and Davis, 2020; Chou et al., 
2019; Kookana et al., 2005; Kovach et al., 1992; Kromann et al., 2011; 
Muhammetoglu et al., 2010; Reus et al., 2002; Soudani et al., 2020; Van Bol 
et al., 2005; Van Bol et al., 2003).   

Some indexing models are strictly data-driven in methodology such as the 
decoupling index used to address the ‘connectivity’ between agricultural 
economy and agricultural pollution, while others such as the 
environmental performance index (EPI) evaluate multivariable complex 
‘systems,’ by statistically modelling data from 32 sustainability indicators 
across two broad evaluation categories, ‘ecological vitality,’ and 
‘environmental health,’ measured against macroeconomic indicators for 
180 countries (Li et al., 2019; Wendling et al., 2020). The use of indexing 
methods as policy decision-support in navigating, for example, the 
inherently complex milieu of pesticides use within agricultural food 
systems offer regulators, policy makers, farmers, and civil society a 
transparent and pragmatic evaluation approach from which to draw 
practical conclusions about risk reduction guidance measures, and 
strategies for achieving ecological, and health-protective goals as a part of 
the broader social-economic framework (Choi et al., 2019; Gorai and 
Goyal, 2015; Kookana et al., 2005; Kovach et al., 1992; Kromann et al., 
2011; Wendling et al., 2020). 

In this project study a novel conceptual framework is proposed with the 
aim of helping inform policy-relevant decision-making and aiding to 
further the sustainable agricultural development dialogue relating to 
reliance of pesticides within global/regional food systems, and its public 
health implications.  The Pesticides Consumer-Environmental Indexing 
System (PCE-ISys) is developed from a ‘generalisable’ agroeconomic 
‘systems-based’ concept (g-AEES), and supported by semi-quantitative 
methodology that draws on a ‘three-tiered’ (upper 25th percentile, median, 
and lower 25th percentile) data distribution coding designation to 
transform continuous data variable(s) to discrete value(s) for a practical 
and transparent measure by which to index agricultural pesticides 
potential exposure defined as pesticides ‘total exposure potential’ (EIR-
IS).  Analysis of the indexing functionality of PCE-ISys is showcased from 
the perspective of select Asia-Pacific and ASEAN countries. 

2.   METHODS 

2.1 Rationale Supporting PCE-ISys 

 

Figure 2: Working Suppositions that Support the Rationale for the PCE-ISys Construct 

 

1. The potential for population-level pesticides exposure, and the magnitude of potential exposure (exposure potential) to chemical farming 

pesticides arise from an agricultural economic system of crop cultivation, food production, trade, and consumption integrated with the 

broader natural environment and political domain (g-AEES); and that the potential for exposure, and exposure potential do not occur in 

an environmentally or economically ‘isolated,’ or ‘compartmentalised’ manner.  In other words, the nature, and magnitude of pesticides 

total exposure potential is multi-factorial, and an integrated part of the system. 

2. There are many social and economic factors that contribute to the potential for human agricultural pesticides exposure, and exposure 

potential. Four key variables, however, are essential in order to conceptualise, quantify, and rate the potential for such presumed exposure. 

I) Use of chemicals for the express purpose of crop protection, II) A requisite goal of producing measurable crop outputs for commercial 

food markets, and livestock productivity,  

III) Quantifiably discernible land-use allocated for agricultural production, and IV) A quantifiably discernible population cohort 

associated with the given system of economic crop cultivation, food production, consumption, trade and natural environment. 

3. Economic, agricultural, and land-use policy decisions (characteristic of agroeconomic environmental systems) are governance variables 

that affect the potential for population-level pesticides exposure, and exposure potential. 

4. Population-based potential for pesticides exposure, and exposure potential occurs from collective (multi-aggregated) pathways, i.e., the 

summation of potential exposures from dietary intake of food products, drinking water, occupational, and non-occupational inhalation, 

and dermal routes. 

5. Physico-chemical properties of pesticides, and environmental variability and uncertainty are inherently associated with the nature and 

degree of population-based potential for exposure, and exposure potential. 

6. The main source(s) for the potential for population-based pesticides exposure, and exposure potential arise from aggregate agricultural 

and economic policy decisions from within a population cohort’s own country where pesticides are used as inputs for agricultural 

production. 

7. Population-based potential for pesticides exposure, and the magnitude of potential exposure (and risk) are continuously ‘shifted’ vis-à-

vis food commodities consumed, and traded at local, regional, national, and international levels.  Thus, the ‘distribution’ of exposure and 

risk potential across populations are constantly shifted from one geographical space to another, and that the net ‘influx-efflux’ of total 

exposure potential is in a state of variable commercial and ecological ‘equilibrium.’ This assumption is supported by the measurable 

ubiquity of pesticides in food commodities, and the natural environment (on a global scale). 

8. The existence or absence of, and/or the degree of robustness in health-based regulatory policy (including, compliance and enforcement) 

impact(s) the extent to which the potential for pesticides exposure, and exposure potential can occur. 

9. Agricultural pesticides usage, including intensity of use, and tonnage are not the only variables that contribute to population-based 

exposure potential, and total exposure potential, but [usage] is the primary agroeconomic systems-based input necessary for human 

exposure to occur, and for total exposure potential to be observed and evaluated. 

10. The Precautionary Principle – Chemical farming pesticides are inherently hazardous to all biological organisms, albeit to varying degrees.  

Thus, the basis for the PCE-ISys model output(s), i.e., the potential for exposure, and daily magnitude of potential exposure (per person) 

assumes that pesticides lower total exposure potential (by population) is always more favourable compared with higher total exposure 

potential.  Thus, the concept of ‘total exposure potential’ should be woven into policy strategy for reducing and/or preventing pesticides-

related health and environmental impact(s) in lieu of (or in conjunction with) a risk-based approach.   
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The Pesticides Consumer-Environmental Indexing System (PCE-ISys) is a 
policy evaluation framework built on principles, and indicators of 
agricultural economy supported by semi-quantitative methods.  The 
model is purposed to provide a data-driven screening of population-based 
pesticides potential exposure associated with (presumed) economic 
macro-policy decisions that impact key agricultural systems inputs and 
outcomes, i.e., pesticides-use, agricultural land-use, and crop productivity. 
The PCE-ISys decision-support model is based on the principal 
assumption that the potential for population-level exposure together with 
the magnitude of potential exposure, i.e., ‘total exposure potential’ arises 
from the summation use of pesticides across the broader system of crop 
cultivation, food production, trade, consumption, and environment.   

The PCE-ISys concept works by indexing the potential for pesticides 
exposure, and quantifying and indexing the magnitude of potential 
exposure on a ‘per capita’ basis.  The rationale for the indexing scheme is 
based on the idea that substantially limiting, or preventing potential 
exposure at the macro-level is central to reducing pesticides related 
impact(s), which can happen when consideration is given to integrating 
measures of public health into policy decision frameworks that promote 
agricultural economy in the context of sustainable development.  Figure 2 
shows that the PCE-ISys concept is developed from, and buttressed by a 
series of working suppositions that help form the basis for the index 
construct. 

The ten working suppositions help illuminate how a ‘generalisable’ system 
of agricultural economy manifests the reality of pesticides usage, total 
exposure potential, and its likely public health implications. 

2.2 Index Scoring Methodology 

PCE-ISys is defined by the capacity to index the total exposure potential of 
chemical pesticides arising from industrialised systems of agricultural 
economy (g-AEES), the key inputs of which include, total estimated land-
use for agricultural production, total estimated output from crop seeding 
and cultivation, and average total annual pesticides-use all in relation to 
the total population cohort for a given country.  This makes PCE-ISys an 
evaluation scheme built on ‘macro-level’ agricultural indicators, the 
purpose and scope of which serves as a decision-support tool focusing on 
total exposure potential in the context of collective governance and farm-
level decisions that may include policy directives such as implementation 
of GAP or IPM strategies, targeted crop, or pesticides subsidisation, or 
agricultural tax policy that incentivises, or limits specific farming methods 
and/or practices.   

2.2.1 Methods-Driven Requirements for PCE-ISys Indexing 

Indicators that help explain complex systems (such as g-AEES) are 
inherently fraught with variability, uncertainty, and randomness arising 
from a host of factors ranging from environmental condition(s) to policy 
decision-making processes; in turn, leading to challenges in how health 
and environmental outcomes stemming from those system(s) may be 
interpreted.  The PCE-ISys model construct is both data-driven and 
stochastic, so interpretative applicability of its indexing results rely on 
three key elements, 

• First, evaluation dataset(s) of adequate sample size.  Cochran’s 
Formula for estimating sample size (modified for ‘smaller’ 
populations) at 95% confidence is used to determine the minimum 
required sample size of nations for the project study (Bartlett II, et 
al., 2001; Pourhoseingholi et al., 2013). 

 

with ‘p’ (the proportion of the population with the defining attribute) 
characterised by  crop production (by country), where p = 0.91892, 
Z = 1.96, e = .05, and N = 224, q = 1 - p   

• Second is data transformation of g-AEES indicator(s) from 
continuous to discrete variable for indexing purposes to allow for 
direct ‘country-to-country’ observational comparability on a relative 
basis. 

• Third, a linear correlation assumption to allow for valid statistical 
inference in supporting the model indicator variable(s) within the 
PCE-ISys design construct, i.e., g-AEES, with the model’s response 
output variable, i.e., EIR-IS.  Figure 3. shows an (approximately 
‘normal-distribution shaped’) histogram of pesticides total exposure 
potential scores for all country observations from 1990 - 2016.  

 

Figure 3: Frequency Distribution of Pesticides Total Exposure Potential 
(EIR-IS), by Country Observation for Time Series 1990-2016 

Key Parameters 

Percentile 
Category 

(%) 

Coded 

Points 
Comments 

Total Annual Pesticides 
Use Rate (PUR) (by 

country); Agricultural 
pesticides-use is directly 
related to the potential 

for human exposure 

Upper 25th 5 A higher 
pesticide use 

rate is 
associated with 
a higher point 

score within the 
context of g-

AEES 

Middle 
50th 

3 

Lower 
25th 

1 

Annual Crop 
Production Index 

(CPIDX) (by country); 
Total annual pesticides-

use rate is a fixed 
average measure; 

therefore, crop 
productivity is inversely 

related to potential 
pesticides exposure 

Upper 
25th 

1 
The higher the 
crop output the 

lower the 
pesticide use 

distribution per 
unit crop, and 
thus the lower 

the score. 

Middle 
50th 

3 

Lower 
25th 

5 

Annual Estimated 
Agricultural Land Area 
(AGL) (by country); The 
product of pesticides use 

intensity and total 
estimated area of land 
used for agricultural 
function serves as a 
direct indicator for 
pesticides tonnage 

Upper 
25th 

5 Land-use is a 
key factor in 
estimating 
pesticides 

tonnage.  The 
more land area 

used for 
agriculture the 

higher the score. 

Middle 
50th 

3 

Lower 
25th 

1 

Total Annual Estimated 
Population (AEP) 

(by country); Population 
size affects the overall 

potential exposure 
implications associated 

with pesticides-use 
within a given a country 

Upper 
25th 

1 
Exposure 

potential is 
‘diluted’ with 

increasing 
population 

relative to total 
average 

pesticides 
tonnage. 

Middle 
50th 

3 

Lower 
25th 

5 

Figure 4: PCE-ISys Three-tiered Percentile-based Coded Point Scheme 

PCE-ISys (population-based) pesticides total exposure potential is 
expressed as an aggregated relative measure (by country) called the 
Exposure Indicator Ratio-weighted Index Score, or ‘EIR-IS’ representing 
the potential for exposure, ‘weighted’ by the average daily magnitude of 
potential exposure (called ‘exposure potential’) on a per capita basis,  

EIR-IS (by country) = PCE-IS (by country) + EIRscore (by country)             (1) 

EIR-IS is derived from the sum of two relative indexing measures, 

• The Pesticides Consumer-Environmental Index Score (PCE-IS), and 
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• The Exposure Indicator Ratio Score (EIRscore) 

Both metrics are discrete numeric values that correspond to continuous 
indicator variables.   Where the variable(s) fall within one of three 
percentile categories (Upper 25th, Middle 50th, and Lower 25th) across the 
distribution of continuous variables for a given evaluation dataset 
determines the index/indicator score (Han et al., 2012; Toppr, 2020). 

• Upper percentile = (3(n+1)/4) th term 

• Median percentile = ((n+1)/2) th term 

• Lower percentile = ((n+1)/4) th term 

As shown in Figure 4 each percentile category is assigned a designated 
value, 1-,3-, or 5. ‘3’ is the value ‘coded’ to continuous indicator variables 
that fall within the middle 50th percentile of the distribution range.  An 
assigned point score of ‘1’ or ‘5’ corresponds to either the upper or lower 
25th percentile, depending on how the respective indicator variable is 
assumed to behave within g-AEES. 

PCE-IS represents the potential for pesticides exposure (by country) for 
one calendar year.  The index score is expressed as,   

PCE-IS = PUR (%ile) + CPIDX (%ile) + AGL (%ile) + AEP (%ile)                (2) 

and has a score range from 4 to 20 in incremental units of two.  The higher 
the PCE index score the greater the potential for pesticides exposure.  

The EIRscore represents a discrete relative value for pesticides ‘exposure 
potential.’  The score is a numeric ‘weighting’ factor (when combined) with 
PCE-IS produces a total exposure potential score (EIR-IS), with an index 
scale of 5 to 25 (by country).  Similar to the PCE-IS scoring methodology, 
EIRscore is scored based on where the Pesticides Exposure Indicator Ratio 
(PiexpR) variable falls within the data distribution range of all PiexpR values 
for the given evaluation dataset (by year), seen in Figure 5.   

Key 
Parameters 

Percentile 
Category 

(%) 

EIR 
Coded 

Points 

Comments 

PiexpR (by 
country); a 

relative measure 
of daily 

pesticides 
exposure 

potential per 
capita 

Upper 25th 5 
EIRscore is the 

numeric relative 
measure of 

PiexpR that is 
used to ‘weight’ 

PCE-IS 

Middle 50th 3 

Lower 25th 1 

Figure 5: PCE-ISys Percentile-based Coded Point Scheme for PiexpR 

The higher the PiexpR value across the distribution range, the higher the 
(percentile category based) EIRscore.  PiexpR is a unitless continuous variable 
that represents the relative average measure of daily pesticides exposure 
potential that is equal to, exceeds, or is below the Pesticides Reference 
Indicator Ratio (PirefR = PirefUC / PirefUC); and is expressed as follows: 

PiexpR = PiexpUC / PirefUC                                                                  (3) 

where PiexpUC (the unit-converted Pesticides Exposure Indicator) is a 
function of the product of the unit-converted pesticides-to-crop 
productivity ratio (PCPr) and farmland area per capita (FLAC) 

Piexp = PCPr x FLAC (kgpesticides person-1 year-1) 

↓ 

PCPrcountry (kgpesticides / ha) x FLACcountry (ha/person) = Piexp 

Annual (1-year) [unit conversion] 

↓ 

(kgpesticides /person-year) (1-year/365 days) (1*106 mg /1 kgpesticides) 

↓ 

Pesticides Exposure Indicator (mgpesticides person-1 day-1) = PiexpUC (4) 

where, 

Pesticides-to-Crop 
Productivity Ratio (PCPr) 

↓ 

Total (Annual) Pesticides Use 
Rate (kg/ha) 

Farmland Area per capita 
(FLAC) 

↓ 

Total (Annual) Agricultural Land 
Area (ha) 

Annual Crop Production Index Annual Estimated Country 
Population (per.) 

Next, the Pesticides Reference Indicator (PirefUC) denotes a benchmark 
level representing the 95% upper bound limit of the mean (unit-
converted) Pesticides Exposure Indicator value(s) for all countries (within 
a given evaluation dataset) that have annual total average pesticides use 
rate(s) less than or equal to 0.5 kg/ha. 

PirefUC = 95% UCL of µPiexpUC (pesticides use rate ≤ 0.5 kg/ha, ‘low’)      (5) 

where,  

 

Pesticides use rate level(s) such as 0.5 kg/ha were adopted as a 
modification of the Wachter & Staring guideline protocol for active 
ingredient use rate(s) (World Health Organization, 1990), and correspond 
to the economic status, and regulatory sophistication of the given country.  
Annual use rates of 0.5 kg/ha to 0.1 kg/ha are graded as ‘low’ while <0.1 
kg/ha, and ≥ 1 kg/ha annual pesticides active ingredient use rate are 
graded as ‘very low,’ and ‘high,’ respectively.  PirefUC reflects the minimum 
threshold of average daily pesticides exposure potential that is rated as a 
‘Lower Appreciable’ public health concern. 

2.2.2 PCE-ISys Public Health Rating Scheme  

The PCE-ISys evaluation model is not a tool designed to reflect 
estimation(s) of risk or impact(s) associated with the use of crop 
protection chemicals.  Instead, [it] is a data-driven construct that produces 
a relative measure of pesticides-related potential exposure that 
corresponds to a generic qualitative rating (supported by Working 
Supposition 10) termed ‘public health concern.’  The basis for the indexing 
system’s public health-related rating scheme is centred on three basic 
precepts,  

• That chemical pesticides are engineered to produce target organism 
mortality, but also manifest varying degrees of ‘collateral’ toxicity to 
other biological species, including humans.  

• That pesticides-related health impact(s) and risk are function(s) of 
pesticides exposure. 

• That pesticides risk reduction through ‘integrated’ policy and 
planning measure(s), over the long-term, are best accomplished, and 
more cost-effective through prevention efforts than through (largely 
cost externalising) ‘command and control’ impact mitigation.    

PCE-ISys public health rating categories correspond to pesticides total 
exposure potential as a function of EIR-IS or PCE-IS percentile-based 
scoring distribution(s).  Figure 6. illustrates that the public health 
classification measure for the indexing system is a qualitative expression 
termed ‘Appreciable’ public health concern.  

The scoring classifications across each data distribution range are ordered 
according to percentile range: Upper 25th%ile = Highest Appreciable, 
Median = Appreciable, and Lower 25th%ile = Lower Appreciable.  Based on 
the index score distribution(s) for each of the 27 evaluation datasets, the 
year-to-year threshold levels for each respective percentile range for this 
project study was as follows (index score distributions were tabulated 
from data available at www.threepercentearth.org/reports-analysis/),  

• EIR-IS ≥ 17 (Upper 25th), EIR-IS = 15 (Middle 50th), EIR-IS ≤ 13 
(Lower 25th)  

• PCE-IS ≥ 14 (Upper 25th), PCE-IS = 12 (Middle 50th), PCE-IS ≤ 10 
(Lower 25th) 

 

X 
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Response Output Percentile Category (%) 
Total Exposure Potential 

Rating or Exposure 
Potential Rating 

Public Health Rating Comments 

EIR-IS or PCE-IS 
(by country) 

Upper 25th Highest 
Highest Appreciable Public 

Health Concern 
EIR-IS or PCE-IS (by country) 

are categorised into three-tiered 
percentiles based on the 

stochastic distribution for each 
respective evaluation dataset 

Middle 50th Medium to High 
Appreciable Public Health 

Concern 

Lower 25th Lower 
Lower Appreciable Public 

Health Concern 

  Figure 6: Public Health Rating Classification Scheme 

2.3 Data Methodology 

2.3.1 Data Sources   

Data that reflect the model input variables for the PCE-ISys model 
construct are available as open access from FAO and World Bank websites. 
Pesticides use data was accessed from the FAO website, 
http://www.fao.org/faostat/en/?#data/RP, and separately downloaded 
in bulk as Excel files categorised by world regions Africa, Americas, Asia, 
Europe, and Oceania.  Data for the rest of the model input variables were 
accessed at the following World Bank websites by doing total bulk data 
downloads as ‘.csv’ files then saved as Excel ‘.xlsx’ files, 1) for Crop 
Production Index, 
https://data.worldbank.org/indicator/AG.PRD.CROP.XD, 2) for annual 
total population estimates by country, 
https://data.worldbank.org/indicator/SP.POP.TOTL, 3) for annual total 
land area by country, 
https://data.worldbank.org/indicator/AG.LND.TOTL.K2, and 4) for 
annual percent land area for agriculture, 
https://data.worldbank.org/indicator/AG.LND.AGRI.ZS.  Data from the 
World Bank site representing the model input variables were extracted 
from the original downloaded spreadsheets and collated into columns in 
new worksheets that included data from 268 countries, world regions, and 
other world development classification categories. 

2.3.2 Organising the Data, and Data Testing the Model 

Data collected from World Bank and FAO websites were organised and 
managed using Microsoft Office Excel version 16.43 with data analysis 
functionality.  The PCE-ISys working model was developed using Excel 
because of the transparency, and ease of use of the application’s 
mathematical functions to generate the indicator, and index outputs by 
country, and by year. A ‘source’ dataset worksheet was used to 
consolidate, and organise all raw, and processed data for the project.  The 
basic steps for the worksheet data consolidation and organising process 
were as follows, 1) all g-AEES (indicator variable) data were entered into 
the source worksheet.  This included all 268 countries, world regions, and 
other world development classification categories, 2) all categories 
(except for individual countries) were culled from the source worksheet; 
use of Cochran’s Formula at 95% confidence (section 2.2.1) estimated the 
minimum required sample size (n) per evaluation dataset for the project 
study to be (at least) 76 countries, 3) the remaining individual countries 
were further  screened    to   include   only   those    with    average   annual  

pesticides-use rate data (157 ≥ n ≥ 133).   

Consumption rate data (by country) were available from years 1990 – 
2016 (the evaluation time-series for the project study).  2016 was the 
terminal year of the time series because (at the time of data collection) 
there was no crop production index data beyond that time frame. 4) g-
AEES indicator variable, total land area was unit-converted from square 
kilometres to hectares in order to comport with the unit expression used 
in the PCE-ISys model, then total agricultural land area (by year) was 
determined by calculating total land area (by country) as a percent of land 
area allocated for agriculture (by country), 5) eight additional columns 
were added to the source worksheet dataset.   

The four initial data columns included the land area unit conversion, then 
calculation of total agricultural land, and PCPr and FLAC output 
calculations, respectively. 6) The final four additional columns included 
calculation and unit conversion of Piexp (kg/person-year) to PiexpUC 
(mg/person-day), inclusion of PirefUC values, calculation of PiexpR 
(PiexpUC/PirefUC), and then scale-adjusted by a factor of 10 (Adjusted-
PiexpR = PiexpUC/PirefUC x 10).  Eighteen auxiliary columns were added to 
the source worksheet, three columns for each g-AEES indicator variable 
and EIRscore percentile range i.e., Excel ‘= percentile’ function for upper 25th 
(‘75th’), 50th, and lower 25th; and the last three auxiliary columns for index 
scoring PCE-IS, totalling EIRscore, and index scoring EIR-IS.  All indicator 
variable data (by country) for twenty-seven evaluation datasets in the 
project study were indexed to generate PCE-IS and EIR-IS for all country 
observations for the time series. 

2.4 PCE-ISys Model – Correlation and Variance 

2.4.1 Multivariate Test for EIR-IS and g-AEES  

A regression analysis was conducted to determine the strength of 
association between the PCE-ISys weighted index score (output/response 
variable), and its respective g-AEES (input) variables.  First, test(s) of 
collinearity demonstrated no discernible correlation among indicator 
(input) variables.  Second, it should be noted that neither indexing output 
trend nor model predictiveness was the focus of the regression exercise. 
In addition, examining the effect(s) of PCE-ISys database outliers among 
the 27 non-independent evaluation datasets (and its effect on model 
output distribution(s)), or use of nested model(s) were considered, but 
decided against for this particular study.   

 

Figure 7: Average EIR-IS as a Function of g-AEES Linear Correlation and Variance 

http://www.fao.org/faostat/en/?#data/RP
https://data.worldbank.org/indicator/AG.PRD.CROP.XD
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/AG.LND.TOTL.K2
https://data.worldbank.org/indicator/AG.LND.AGRI.ZS
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Purposed as a ‘screening-level’ information dissemination tool the aim, 
instead, was to offer a basic underpinning of whether a linear relationship 
exists between pesticides total exposure potential and its model input 
variables in the context of g-AEES (not by country), but on a global and 
generalisable scale.  A standard multivariate analysis was employed using 
g-AEES input variable(s), and their respective index output(s), i.e., EIR-IS 
averaged for all data points within each annual evaluation dataset of the 
time series (by country).  Figure 7. shows the EIR-IS linear response 
output in relation to the four key indicator variables that define the g-
AEES-based model. 

The g-AEES regression model shown in Figure 7 demonstrated a 
moderately strong association between average EIR-IS and average 
pesticides consumption rate, Crop Production Index, agricultural land 

area, and estimated country population, with r=0.657789, and directional 
correlation for three of 4 input variables consistent with their assumed 
behaviour within g-AEES (‘population’ variable was equivocal).  
Multivariate R2 indicated that the model explains between 42% to over 
43% of the variance in average pesticides total exposure potential (F-Test 
Significance = 6.62 x 10-18).   

2.4.2 Multivariate Test for EIR-IS and Exposure Potential  

A second regression test was conducted to examine the strength of 
association between average EIR-IS, and indicator variables used to derive 
PiexpUC.  There was, again, no demonstrated collinearity.  Figure 8. shows 
the EIR-IS linear response output in relation to the two indicator variables 
used to determine exposure potential, i.e., PCPr and FLAC.  

 

 

Figure 8: Average EIR-IS as a function of PiexpUC Linear Correlation and Variance 

The multivariate ‘exposure potential’ (PiexpUC) model also demonstrated a 
moderately strong positive directional correlation between average 
pesticides total exposure potential and average daily magnitude of 
potential exposure (per person) with r=0.699048.  Variance in EIR-IS as a 
function of ‘exposure potential’ was R2=0.49 (F-Test Significance = 3.72 x 
10-23) indicating that nearly half the variation in EIR-IS output(s) are 
explained by pesticides use per unit of crop productivity and agricultural 
land area per capita (a surrogate indicator of pesticides tonnage). All 
indicator variables for both models were statistically significant, except 
for ‘Average Estimated (Country) Population,’ which was marginally non-
statistically significant (p-value = 0.078810616); though this occurrence 
was not altogether unexpected given the likely complexity of human 
population dynamics in relation to agricultural food systems.   

The fact, however, that FLAC was both strongly statistically significant and 
linearly correlated to EIR-IS helps support the argument that country 
population (in relationship with agricultural land-use) is indeed a relevant 
variable (in the context of pesticides tonnage) for interpreting pesticides 
total exposure potential, but poses a challenge in defining its contributing 
influence on EIR-IS from the perspective of g-AEES, indicating that a more 
in-depth computational modelling exercise is likely necessary to parse out 
the effect of ‘population’ within this system.  

The machinations of politics, governance, and economic activity that 
characterise complex ‘social-environmental’ systems, create inherent 
degrees of uncertainty, and variability in models that attempt to interpret 
such systems.  Thus, Pearson correlation levels tangibly above 0.5 for both 
regression tests arguably help inspire a reasonable degree of confidence 
for the plausibility of PCE-ISys as a workable policy decision-support 
concept (Samuel and Okey, 2015).  Similarly, R2 values for both regression 
models indicating that the index construct explains over 40% to nearly 
50% of any change in the EIR-IS response variable output is an 
encouraging prospect for the usefulness of PCE-ISys. Why? 1) The degree 
of model variance indicated in both g-AEES and PiexpUC models allude to 
PCE-ISys agroeconomic predictor variables as basic factors associated 
with the modern agricultural food system, and that 2) by relying on a 
highly parsimonious model  that precludes other potentially knotty 
(social, cultural, political, regulatory, and environmental) variables (that, 
although may ‘capture’ the remaining difference in model variance) 
minimises the risk of diminishing the transparency, and confounding the 
general interpretative capacity of the index output(s) that would arguably 

undermine its main functional purpose and advantage as a broad-based 
information dissemination tool.   

3.   RESULTS AND DISCUSSION 

3.1 Pesticides Total Exposure Potential  

3.1.1 Ranking Profiles 

The primary analytical feature of PCE-ISys is the capacity to (semi-
quantitatively) index the potential for exposure to pesticides, ‘weighted’ 
by the magnitude of potential exposure (per capita). One particular 
application derived from this indexing construct is the ability to generate 
a multi-output ‘profile’ that includes, EIR-IS, PCE-IS, and PiexpR used in 
producing a numeric ranking structure for either a single evaluation 
dataset or averaged over a given time series.  Due to the high number of 
total individual indexing outputs and their associated g-AEES parameter 
values (~50000), all parameter-specific data and data-driven outputs 
(excluding PCPr, FLAC, Piexp and PiexpUC categories) for individual country 
observations per evaluation dataset have been made available as open 
access at www.threepercentearth.org/reports-analysis/. A time series-
averaged EIR-IS ranking chart for 157 countries displayed in Table 1. 
(Next page) produced interesting results in terms of pesticides total 
exposure potential (by country) over the 27-year time frame.  Each 
country in the average ranking chart was colour-coded according to world 
region. 

 

Percentile-based index score threshold levels were as follows: 

• Average EIR-IS = highest average total exposure potential (Highest 
Appreciable public health concern) ≥ 17.07407,  

• 17.07407 ˃ Average EIR-IS = medium-to-high total exposure 
potential (Appreciable public health concern) ˃ 12.85185, and  

• Average EIR-IS = Lower average total exposure potential (Lower 
Appreciable public health concern) ≤ 12.85185.   

http://www.threepercentearth.org/reports-analysis/
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Table 1: Time Series-Averaged Exposure Indicator Ratio-Weighted Index Score and Rank (1990 – 2016) 

 

Also, for the project study in this instance, the ‘medium-to-high’ index 
distribution range was further subdivided: 

• ‘high’ (17.07407 ˃ Average EIR-IS (Higher Appreciable public health 
concern) ≥ 15), and  

• ‘medium-to-lower medium’ (15 ˃ Average EIR-IS (Medium 
Appreciable public health concern ˃ 12.85185). 

One noticeable observation gleaned from the time-averaged evaluation 
appears to reveal a broad, underlying consistency between average 
annualised pesticides-use per area of cropland, and pesticides total 
exposure potential, i.e., regions of the world where use rates are deemed 
consistently high, or low such as in the Americas and Africa (FAOSTAT, 
2021), respectively saw overall correspondingly ‘highest,’ and ‘lower’ EIR-
IS outputs for these same areas.  This analysis outcome also draws support 
from the g-AEES linear correlation and variance results. 

Of nations with the highest average pesticides total exposure potential for 
the time series 38%, and 23% were from the Americas, and Asia-Pacific 
region, respectively, while 63% of nineteen G7/G20 nations evaluated in 
the project study demonstrated either ‘high’ or highest total exposure 
potential.  On first pass, a country-by-country global perspective appears 
to suggest that the size of a country’s economy may be a   feasibly   reliable  

indicator for pesticides total exposure potential.  However, a closer look at 
the time series-averaged EIR-IS appears to indicate that developing 
nations with known ‘transitioning’ economies may be consistently more 
vulnerable to higher pesticides total exposure potential.  Examples of such 
places include, Belize, Malaysia, Ecuador, Colombia, Costa Rica, and Fiji, 
countries that (generally speaking) place a relatively high premium on 
economic growth and development, while in some cases discounting 
principles and applications of sustainability (Wendling et al., 2020). 

A wide-ranging, prospective policy analysis of the potential factors that 
may affect EIR-IS, such as human development status, agricultural GDP, 
degree of regulatory sophistication, or measures of socio-cultural 
attitudes toward pesticides may be useful in providing greater insight into 
possible solution(s) for reducing and/or preventing pesticides-related 
impact(s) arising from politically driven, agroeconomic systems.  

3.1.2 Asia-Pacific Region and ASEAN 

The PCE-ISys evaluation study included twenty-nine countries located 
throughout East Asia, South Asia, ASEAN, and Oceania, under the broad 
heading of ‘Asia-Pacific.’  Figure 9. illustrates a vertical EIR-IS index chart 
showing pesticides total exposure potential across the Asia-Pacific region 
from 1990 – 2016 (by country, region, and worldwide).  

 

Figure 9: Time Series-Averaged EIR-IS for the Asia-Pacific Region (by country) 
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Asia-Pacific as a regional designation produced an average EIR-IS of 14.94 
(versus 15.02 globally) for the 27-year time series, indicating that 
agricultural food systems across this region are (on average) 
characterised by pesticides-related ‘Appreciable’ public health concern 
qualified with a sub-group rating of ‘medium’ total exposure potential. A 
more detailed look at the Asia-Pacific indexing results reveal that ten of 29 
nations (34.5%) across this region produced average EIR-IS ratings at, or 
below the 12.85 (lower total exposure potential) benchmark, of which 
Hong Kong (EPI=N/A) is HDI-rated as ‘very high’ (0.949), and Indonesia 
EPI=37.8, HDI=0.718 is G20 designated.  Over half of the remaining 
developing nations in this sub-group (excluding Mongolia EPI=32.2, 
HDI=0.737, Bhutan EPI=39.3, HDI = 0.654, and Bangladesh EPI=29, HDI = 
0.632) are largely rated as having medium HDI (on the lower range), and 
below average environmental performance index score(s) (EPI < 46.44), 
they include, Lao PDR, Myanmar, Nepal, Pakistan, and Timor-Leste (UNDP 
Human Development Index, 2021; Wendling et al., 2020).  

This indexing output ‘dynamic’ appears consistent with evidence that 
generally lesser developed countries that tend to maintain a relatively 
more subsistence, or local market index of agriculture may be (on average) 
less apt to rely on pervasive pesticides-use (which, in some cases, limits 
pesticides tonnage) compared with their more developed counterparts 
(World Health Organization, 1990).  Of the ‘highest total exposure 
potential’ sub-group of Asia-Pacific nations, the majority are recognised as 
‘developing’ (New Zealand EPI=71.3, HDI=0.931 being the exception), and 
having ‘transitioning’ economies (with China being a G20).  They include, 
for example, China, Fiji, Malaysia, Samoa, and Vietnam (UNDP Human 
Development Index, 2021; Wendling et al., 2020).   

Asian-Pacific countries undergoing rapid economic development are 
largely faced with concomitant health and environmental impacts, 
especially evident in China, and across most of ASEAN. Thus, it is not 
surprising that governance and policy measures that direct agricultural 
food systems within these same jurisdictions would also experience (on 
average) consistently higher systemic pesticides-use rates. Table 2. 
displays environmental performance index scores, UN human 
development indexes, the time series-averaged pesticides-use rates, and 
their associated EIR-IS for the ‘highest’ and ‘lower’ total exposure potential 
Asia-Pacific sub-groups (Wendling et al., 2020). 

Table 2: Comparison of Asia-Pacific ‘Highest’ and ‘Lower’ Total 
Exposure Potential Sub-Groups 

Countries with 

(‘highest total exposure 
potential’) 

EPI HDI 
Average 

Pesticides-Use 
Rate (kg/ha) 

Average 
EIR-IS 

China 

Fiji 

Malaysia 

Samoa 

Vietnam 

37.3 0.761 
10.36 

1.86 

6.43 

0.99 

2.49 

18.85 

34.3 0.743 18.70 

47.9 0.810 21.22 

37.3 0.715 17.89 

33.4 0.704 17.30 

Countries with 

(‘lower total exposure 
potential’) 

EPI HDI 
Average 

Pesticides-Use 
Rate (kg/ha) 

Average 
EIR-IS 

Lao PDR 

Myanmar 

Nepal 

Pakistan 

Timor-Leste 

34.8 0.613 
0.013 

0.176 

0.092 

0.246 

0.004 

11.07 

25.1 0.583 12.56 

32.7 0.602 9.96 

33.1 0.557 12.26 

35.3 0.606 12.85 

PCE-ISys indexing outputs broadly demonstrate that by-and-large, and 
irrespective of their EPI ‘sustainability’ rating higher HDI-rated 
developing countries within the Asia-Pacific regional designation 
(generally associated with rapid economic expansion efforts), possess 
agricultural food systems that appear more reliant on pervasive chemical 
pesticides use compared to less developed nations within the region.  Also, 
it can be reasonably surmised that the time series-averaged EIR-IS 
outcomes for each of the countries within their respective sub-groups are 
evidenced by rates of crop protection chemical use that are consistent with 
the Wachter & Staring use-guideline criteria template that associate 
higher or lower active ingredient use-rates with corresponding levels of 
country economic development, and regulatory capacity (World Health 
Organization, 1990).  Evidence-based information derived from PCE-ISys 

outputs used in conjunction with other broad-based, empirically derived 
metrics, such as HDI, GDP, or GNI, for example, may offer policymakers 
and/or regulatory analysts with a viable (policy analysis) alternative to 
the dominant risk-benefit based approach to agroeconomic governance.    

3.1.3 ASEAN Test Case – Malaysia 

Agriculture is an economic mainstay of ASEAN, with farming and fishing 
industries in 2018 generating 10.6% of total GDP across the region, as well 
as contributing up to 72% of employment (by country) (Food and 
Agriculture Organization, 2020).  At the same time, across large swaths of 
the region use of chemical pesticides, perceived as the policy solution of 
highest convenience for ‘ensuring’ optimally higher crop yields in line with 
agricultural intensification goals is marked by surplus evidence of 
deleterious health and environmental outcomes (Economy and 
Environment Institute, 2017; EU Parliament, 2021; Lam et al., 2017; Gupta, 
2012; FAO-Situation Analysis Report, 2021).   

One particularly glaring observation from the year-to-year, and time 
series-averaged components of the project study was the exceedingly high 
EIR-IS value(s) for Malaysia.  In fact, worldwide, over the 26-year span, 
only the nation of Belize produced a higher average EIR-IS (see Figure 9), 
with their being only a 0.7% difference in average index between the two 
countries.  Thus, Malaysia offers a comparative ‘point-of-reference’ test 
case for ASEAN, and Asia-Pacific nations (if not, worldwide) in how EIR-IS 
can be used to screen for the potential public health implications 
associated with pesticides input(s) within agricultural food systems.   

Vietnam was selected for comparative analysis with Malaysia because of 
the former’s similar time series-averaged EIR-IS threshold level and 
‘Highest Appreciable’ public health concern rating. A comparison with 
lower total exposure potential nations was also deemed necessary.  Lao 
PDR was chosen because of its below benchmark 11.07 time series-
averaged EIR-IS (lowest among ASEAN nations), and its measurably lower 
HDI rating of 0.613; and Indonesia was selected for comparison, also due 
to its below benchmark rating of 12.70, and its G20 designation.  The 
difference in HDI between the two nations, and Indonesia’s comparatively 
larger economy provide a more enhanced contrast when comparing 
pesticides total exposure potential with Malaysia.  Figure 10. shows the 
year-to-year trend in annual pesticides use rates for Malaysia, Vietnam, 
Indonesia, and Lao PDR. Data available at 
www.threepercentearth.org/reports-analysis/. 

 

Figure 10: Annual Pesticides Use Rate Trends for Four ASEAN Nations 

The average pesticides use rate for Malaysia from 1990-2016 was 6.43 
kg/ha compared to Vietnam (2.49 kg/ha), Indonesia (0.045 kg/ha), and 
Lao PDR (0.01333 kg/ha), exceeding Vietnam’s average use rate by 61%, 
while surpassing Indonesia and Lao PDR use rate trends by an astounding 
14.34 and 48.2 orders of magnitude, respectively.  According to the 
Wachter & Staring pesticides use-rating guideline, annual use rates of 
pesticides active ingredient of, or exceeding 5 kg/ha is deemed ‘very high’ 
(World Health Organization, 1990).  Also, worth noting is that pesticides 
use has historically been limited within Lao PDR’s agricultural food system 
(including average use rates approaching zero from 1997-2008, 2010, 
2014-2016) possibly reflecting a lesser degree of industrialised farming 
compared with neighbouring countries such as Indonesia, Malaysia, 
Thailand, and Vietnam.  Next, Figure 11. illustrates the year-to-year 
relationship(s) reflecting EIR-IS as a function of PCPr for all four countries. 

http://www.threepercentearth.org/reports-analysis/


Malaysian Journal of Sustainable Agriculture (MJSA) 6(2) (2022) 131-141 

 

 
Cite The Article: Ellis Wongsearaya (2022). An Agricultural ‘Systems-Based’ Framework for Indexing Potential Exposure to  
Farming Pesticides: Test Findings from Asia-Pacific, and Asean. Malaysian Journal of Sustainable Agricultures, 6(2): 131-141. 

 

 

Figure 11: Pesticides Total Exposure Potential as a Function of the 
Pesticides-to-Crop Productivity Ratio 

PCE-ISys ‘average’ correlation and variance tests point to annual 
pesticides use rate and Crop Production Index as the strongest indicator 
variables within the model, with Pesticides-to-Crop Productivity Ratio 
(PCPr) being the strongest contributing indicator of EIR-IS (regression 

coefficient = 43.18, p-value = 1.70 x 10-20) (see Figure 7 and 8).  Analysis of 
the scatter plot results show: 

1) (positive) moderately linear cluster(s) for all four nations, but with 
Lao PDR, and Vietnam’s respective profiles exhibiting visibly more 
data dispersion, the latter of which could be interpreted as a function 
of the abrupt, then incremental decline in average annual pesticides 
usage observed after 1997 (see Figure 10).  

2) a concentrated cluster pattern of higher EIR-IS levels for Malaysia 
congruent with persistently concentrated levels of ‘high-to-very 
high’ pesticides use per unit of crop productivity (per hectare) over 
the time series, with observed levels of pesticides use to crop 
productivity for Indonesia’s and Lao PDR’s g-AEES consistently 1-2 
orders of magnitude below Malaysia’s agroeconomic system (data 
available at www.threepercentearth.org/reports-analysis/).  

3) that for Vietnam, pesticides use levels relative to its crop production 
indices appeared more variable, but consistent with its decreased 
usage rates and increased productivity trends over the 26-year span 
(data available at www.threepercentearth.org/reports-analysis/).   

Next, a comparison of highest and lowest EIR-IS to PCPr ‘pair-function’ 
offer additional perspective on interpreting the EIR-IS-PCPr scatter plots.  
Table 3. shows the change in the difference in magnitude between highest 
and lowest PCPr for Vietnam, Indonesia, and Lao PDR compared to 
Malaysia for the time series.  

Table 3: Highest and Lowest Scatter Plot EIR-IS to PCPr ‘Pair-Function’ PCPr Ratio Difference 

COUNTRY 

HIGHEST SCATTER PLOT 

‘PAIR-FUNCTION’ 

(red dots in Figure 11) 

LOWEST SCATTER PLOT 
‘PAIR-FUNCTION’ (blue 

dots in Figure 11) 

HIGHEST 

‘PAIR-FUNCTION’ 

PCPr RATIO 
(Malaysia relative to 
comparison nation) 

LOWEST 

‘PAIR-FUNCTION’ 
PCPr RATIO 

(Malaysia relative to 
comparison nation) 

HIGHEST to LOWEST 
‘PAIR-FUNCTION’ 

PCPr RATIO 
DIFFERENCE 

(Malaysia relative to 
comparison nation) 

MALAYSIA EIR-IS=23, PCPr=0.101920 EIR-IS=17, PCPr=0.07146    

VIETNAM EIR-IS=23, PCPr=0.05713 EIR-IS=15, PCPr=0.01202 1.78x 5.95x (4.17x) 

INDONESIA EIR-IS=13, PCPr=0.00069 EIR-IS=9, PCPr=0.00022 147.71x 324.81x (177.1x) 

LAO PDR EIR-IS=13, PCPr=0.00105 EIR-IS=9, PCPr=0.00015 97.07x 476.4x (379.3x) 

The magnitude of difference in highest and lowest EIR-IS to PCPr ‘pair-
function’ PCPr ratio for Malaysia relative to Vietnam (4.17x), Indonesia 
(177.1x), and Lao PDR (379.3x), respectively, is consistent with the latter 
three nations (especially Vietnam) either reducing, or maintaining 
considerably lower pesticides consumption per unit of crop productivity 
in contrast to Malaysia (data available at 
www.threepercentearth.org/reports-analysis/), whose collective 
agricultural policy goals likely stayed the economic course over the 27-
year time series.  ‘Brackets in bold’ indicate that the magnitude of 
difference was driven by the lowest ‘pair-function’ ratio.  Table 3. results 
interpretation draws support from results displayed in Table 4. showing 
the highest and lowest EIR-IS to PCPr scatter plot ‘pair-function’ range 
profiles for Malaysia, Vietnam, Indonesia, and Lao PDR.  

Table 4: Comparison of the Range of Difference in Highest and 
Lowest PCPr (by country) 

COUNTRY 
∆ HIGHEST to 
LOWEST PCPr 
(by country) 

% ∆ HIGHEST to 
LOWEST PCPr 

RELATIVE to HIGHEST 
PCPr (by country) 

∆ EIR-IS 

MALAYSIA 0.03046 29.89% -6 

VIETNAM 0.04511 78.95% -8 

INDONESIA 0.00047 68.59% -4 

LAO PDR 0.00089 85.34% -4 

Higher percentage change(s) between the difference in highest and lowest 
PCPr (by country) relative to highest PCPr (by country) denotes either a 
greater range of reduction in pesticides use per unit of crop productivity 
for each hectare of farmed land (per annum), or static use-rates relative to 
crop output coupled with measurable crop productivity increases.  Table 
4 results show a comparatively sizable difference in the range of reduction 
in (or consistently lower) use of pesticides for Vietnam (+49%), Indonesia 
(+39%), and Lao PDR (+56%) compared to Malaysia.  Malaysia’s six-point 
EIR-IS decrease at its minimum range turned out to be a statistical outlier 
reflecting a largely ‘non-diminished’ relative effect, i.e.,  pesticides use-
rates data for the country (over the time series) remained consistently 
‘very high,’ as did its overall index pattern with no change in its public 

health rating category, despite considerable increases in crop productivity 
(data available at www.threepercentearth.org/reports-analysis/).  

Findings from the scatter plot analysis point to pesticides consumption 
relative to crop productivity as a reasonable indicator corollary to total 
exposure potential.  The broad conclusion drawn from interpretation of 
the EIR-IS to PCPr scatter plot results (corroborated by FAO and World 
Bank-sourced data, www.threepercentearth.org/reports-analysis/) is 
that the ratio of pesticides use to agroeconomic productivity for Malaysia, 
skewed by ‘very high’ average pesticides use rates, likely contribute to the 
country’s persistently elevated pesticides total exposure potential.  
Ministry coordinated policy analysis efforts targeting issue(s) of ‘high 
proportional use-to-productivity’ within Malaysia’s agricultural food 
system may serve to reduce future (per capita) health and environmental 
impact(s) from agricultural pesticides use.  

Future research and policy analysis aimed at validating the decision-
support functionality of PCE-ISys may include, charting usage trends in 
conjunction with agricultural land-use changes, and/or evaluating similar 
scatter plot profiles for other Asia-Pacific nation sub-groups as a way of 
ascertaining a more comprehensive picture of potential pesticides 
impact(s) arising from regional food systems, and to what extent those 
potential impact(s) are shaped by conventional versus sustainable 
agricultural practices. Other research related consideration(s) for PCE-
ISys may involve examining annual PiexpUC trends relative to registered 
crop protection chemicals (by country) as a way of extrapolating 
proportional risk from those select pesticides groupings.  

Most indexing systems with policy and/or business application(s) are 
designed to disseminate ‘units’ of information on a broadly ‘generalisable’ 
scale, captured within a defined scope of time and space context in 
addressing a given social, economic, or environmental issue (Consumer 
Finance Institute, 2021; Gorai, AK. and Goyal, P, 2015; Kookana, RS., et al., 
2005; Kovach, J., et al., 1992).  In this respect, PCE-ISys is no different from 
other indexing models in that its algorithm processes data drawn from a 
limited set of parameters, i.e., pesticides use, crop productivity, 
agricultural land, and population.  

One obvious limitation of this type of heuristic evaluation regimen is that 
the indexing outputs do not necessarily allow for inferential interpretation 
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beyond the scope of its defined parameters.  For PCE-ISys that would be g-
AEES.  Concomitantly, however, what the PCE-ISys model lacks in 
capability to, for example quantify pesticides impact is replaced by the 
power of its indexing output(s) to prospectively reframe the debate about 
the types of measurement outcomes (qualitative vs. quantitative, or 
precautionary vs. risk-based)  that should be prioritised in helping guide 
agricultural policy-based decision making, especially given that the 
economic and environmental reality of the world is not 
‘compartmentalised,’ but is in fact based on the interconnectivity [of, and 
within] social and ecological systems. 

4.   CONCLUSION 

As the Asia-Pacific region, and more specifically ASEAN, begin remission 
from the COVID-19 pandemic, the resiliency of Southeast Asia’s 
agricultural economy will be showcased.   A prime opportunity exists for 
governments, economic participants of food producing systems, and civil 
society to begin deliberating in earnest the existing limitations of current 
risk-based pesticides management for the region.  Population across the 
ASEAN region is projected to exceed 740 million people by 2035, of which 
a monumental task lies ahead to forge sustainable agricultural food 
systems that comport with UN SDG target indicators such as 2.4, 3.9 and 
6.3. The Pesticides Consumer-Environmental Indexing System (PCE-ISys) 
is a novel, semi-quantitative framework designed to be a broad-based, 
decision-support screening tool that works by integrating salient 
evidence-based information into agroeconomic and environmental policy 
analysis.   

This project study demonstrates the policy-relevant indexing 
application(s) of PCE-ISys, painting a somewhat nuanced, yet concerning 
picture of pesticides use throughout ASEAN, and the Asia-Pacific region.  
By-and-large, agricultural pesticides use remains systemic and expansive, 
likely posing continued health and environmental risk(s) for this area of 
the world.  Alternatives to largely risk assessment-derived health-based 
regulatory policy are needed.  ‘Systems-based’ indexing models such as 
PCE-ISys can be employed to 1.) encourage governing bodies to transition 
towards harmonised policy concepts that more readily foster sustainable 
agricultural food systems, and 2.) promote research to further the 
discourse in sustainable development policy, specifically in order to 
meaningfully address the inefficient, yet enduring ‘policy-
compartmentalising’ of crop protection chemicals use in food systems, and 
its associated long-standing resultant impacts to ecological and human 
health.  
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